コンテンツにスキップ

複素共役

出典: フリー百科事典『ウィキペディア(Wikipedia)』
複素数 z の複素共役 z を取る操作は、複素数平面では実軸対称変換に当たる。

数学において、複素共役複素共軛、ふくそきょうやく、: complex conjugate)とは、複素数の虚部を反数にした複素数をとる操作(写像)のことである。複素数 z共役複素数を記号で z で表す[注釈 1]

複素数 z = a + bia, b実数i虚数単位)の共役複素数 z

である。極形式表示した複素数 z = r(cos θ + i sin θ)r ≥ 0, θ は実数)の共役複素数 z は、偏角を反数にした複素数である:

複素数の共役をとる複素関数  : CC ; zz環同型である。すなわち次が成り立つ。

  • z + w = z + w
  • zw = z w

複素共役は実数を変えない:

  • z が実数 ⇔ z = z

逆に、C 上の環準同型写像で、実数を変えないものは、恒等写像か複素共役変換に限られる[1][2]

複素共役変換は、C の全ての点で複素微分不可能である。

複素共役変換を R 上の線型変換と見ると、その表現行列

代数方程式について、

「実係数多項式 P(x) が虚数 α をもつならば、α の共役複素数 αP(x) の虚数根である」

すなわち

実係数多項式 P(x) について、P(α) = 0 ⇔ P(α) = 0

が成り立つ(1746年ダランベール)。このことは、複素共役変換は環準同型であることから容易に示せる。

定義と特徴づけ

[編集]

複素数 z = a + bia, b実数i虚数単位)の複素共役とは、

を取る操作のことである。この写像複素共役変換という。

複素共役変換は環同型写像である。すなわち、複素共役変換  : CC ; zz に対して、次が成り立つ。

さらに、複素共役は実数を保つ:

  • z が実数 z = z

逆に、C 上の環準同型写像で、実数を変えないものは、恒等写像か複素共役変換に限られる[1][2]

(証明)

σ : CC は環準同型写像で、
実数 r に対して σ(r) = r
を満たすとする。
(σ(i))2 = σ(i2) = σ(−1) = −1
(σ(i) + i)(σ(i) − i) = 0
∴  σ(i) = ±i
ゆえに、複素数 z = x + yix, y は実数)に対して、
σ(z) = σ(x + yi) = σ(x) + σ(y)σ(i) = x + y σ(i) = x ± yi
σ(x + yi) = x + yi のとき、σ は恒等写像。
σ(x + yi) = xyi のとき、σ は複素共役変換である。(証明終)

性質

[編集]

計算法則

[編集]

z, w を複素数とする。以下の性質が成り立つ。

  • が実数 ⇔
    • が純虚数 ⇔
    • n は整数)

上記の3つの性質は、複素共役を特徴付けるため、重要である。

  • 対合
    • 逆数は、絶対値と共役で表せる。

複素数の種々の値

[編集]

複素共役を用いると、複素数の実部・虚部、絶対値・偏角を表すことができる。

代数方程式

[編集]

実係数多項式 f(x) が虚数 α をもつならば、α の共役複素数 αf(x) の根である。すなわち、実数係数多項式 f(x) について

が成り立つ(1746年ダランベール)。このことは複素共役が環準同型であることから分かる。

複素解析

[編集]

複素共役変換  : CC ; zz は、C の全ての点で複素微分不可能である。

実軸の開集合上で実数値をとる実解析的関数について、その解析接続は、共役複素数に対して共役複素数を与える。たとえば複素解析において

(ただし実軸のある領域上で実数値をとる分枝の、複素共役について対称的な領域への拡張について)

が成り立つ。

複素数空間

[編集]

複素線形空間 Cn の標準内積 <・|・> : Cn × CnR≥0 は次の式で定義される:

に対して、

脚注

[編集]

注釈

[編集]
  1. ^ 複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列の随伴行列などとの混乱を避けるためにあまり使われない[要出典]

出典

[編集]
  1. ^ a b 高橋礼司「第1章「複素数」」『複素解析』東京大学出版会、1990年1月1日、5頁。ISBN 978-4130621069 読書メモ
  2. ^ a b 羽鳥理「Ring homomorphisms on commutative Banach algebras(1)〔和文〕」『数理解析研究所講究録』第1137巻、京都大学数理解析研究所、2000年4月、1-8頁、CRID 1050282677151329152hdl:2433/63807ISSN 1880-2818 

参考文献

[編集]

関連項目

[編集]

外部リンク

[編集]


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy