Skip to main content
Log in

Long-time dynamics of 2d double-diffusive convection: analysis and/of numerics

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a two-dimensional model of double-diffusive convection and its time discretisation using a second-order scheme (based on backward differentiation formula for the time derivative) which treats the non-linear term explicitly. Uniform bounds on the solutions of both the continuous and discrete models are derived (under a timestep restriction for the discrete model), proving the existence of attractors and invariant measures supported on them. As a consequence, the convergence of the attractors and long time statistical properties of the discrete model to those of the continuous one in the limit of vanishing timestep can be obtained following established methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2002)

    Google Scholar 

  2. Balmforth, N.J., Ghadge, S.A., Kettapun, A., Mandre, S.D.: Bounds on double-diffusive convection. J. Fluid Mech. 569, 29–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, London (1961)

    MATH  Google Scholar 

  4. Chen, C.F., Johnson, D.H.: Double-diffusive convection: a report on an engineering foundation conference. J. Fluid Mech. 138, 405–416 (1984)

    Article  Google Scholar 

  5. Coti Zelati, M., Tone F.: Multivalued attractors and their approximation: applications to the Navier-Stokes equations. Numer. Math. 122, 421–441. arXiv:1111.4368 (2012)

  6. Foias, C., Manley, O.P., Temam, R.M.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlin. Anal. 11, 939–967 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  8. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150. arXiv:1105.4349 (2012)

  9. Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  10. Hill, A.T., Süli, E.: Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations. Math. Comput. 64, 1097–1122 (1995)

    Article  MATH  Google Scholar 

  11. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huppert, H.E., Turner, J.S.: Double-diffusive convection. J. Fluid Mech. 106, 299–329 (1981)

    Article  MATH  Google Scholar 

  13. Kim, N.: Large friction limit and the inviscid limit of 2d Navier–Stokes equations under Navier friction condition. SIAM J. Math. Anal. 41, 1653–1663 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mirouh, G.M., Garaud, P., Stellmach, S., Traxler, A.L., Wood, T.S.: A new model for mixing by double-diffusive convection (semi-convection) I. The conditions for layer formation. Astrophys. J. 750, 18 (2012)

  15. Schmitt, R.W.: Double diffusion in oceanography. Ann. Rev. Fluid Mech. 26, 255–285 (1994)

    Article  Google Scholar 

  16. Spiegel, E.A.: Semiconvection. Commun. Astrophys. Space Phys. 1, 57–60 (1969)

    Google Scholar 

  17. Temam, R.: Navier–Stokes equations and nonlinear functional analysis, 2nd edn. SIAM, Oxford (1995)

    Book  MATH  Google Scholar 

  18. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  19. Wang, X.: Approximation of stationary statistical properties of dissipative dynamical systems: time discretization. Math. Comput. 79, 259–280 (2010)

    Article  MATH  Google Scholar 

  20. Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations. Numer. Math. 121, 753–779. arXiv:1108.5409 (2012)

  21. Weaver, A.J., Bitz, C.M., Fanning, A.F., Holland, M.M.: Thermohaline circulation: high-latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci. 27, 231–285 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

Wang’s work is supported in part by grants from the National Science Foundation and a planning grant from Florida State University. We thank the referee for a careful reading of the manuscript and for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djoko Wirosoetisno.

Appendix: 2d Navier–Stokes equations

Appendix: 2d Navier–Stokes equations

In this appendix we present an alternate derivation of the boundedness results in [20], without using the Wente-type estimate of [13] but requiring slightly more regular initial data. In principle these could be obtained following the proofs of Theorems 1 and 2 above, but the computation is much cleaner in this case (mostly due to the periodic boundary conditions) so we present it separately.

The system is the 2d Navier–Stokes equations

$$\begin{aligned} \frac{3\omega ^{n+1}-4\omega ^n+\omega ^{n-1}}{2k} + \partial (2\psi ^n-\psi ^{n-1},2\omega ^n-\omega ^{n-1}) = \mu \Delta \omega ^{n+1} + f^n \end{aligned}$$
(4.1)

with periodic boundary conditions. It is clear that \(\omega ^n\) has zero integral over \(\mathcal {D}\), and we define \(\psi ^n\) uniquely by the zero-integral condition. These imply (2.1)–(2.2), which we will use below without further mention. Assuming that the initial data \(\omega ^0\), \(\omega ^1\in H^{1/2}\) (in fact, we only need \(H^\epsilon \) for any \(\epsilon >0\), but will write \(H^{1/2}\) for concreteness), we derive uniform bounds for \(\omega ^n\) in \(L^2\), \(H^1\) and \(H^2\).

Assuming for now the uniform bound

$$\begin{aligned} |\omega ^n|_{H^{1/2}}^2 \le k^{-1/2} M_\omega (\ldots ) \qquad \text {for }n\in \{2,3,\ldots \}, \end{aligned}$$
(4.2)

we multiply (4.1) by \(2k\omega ^{n+1}\) in \(L^2\), use (3.10) and estimate as before,

$$\begin{aligned}&|~\,\!\!\![{\omega ^n,\omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 - \nu k\,|\omega ^{n+1}|^2 + 2\mu k\,|\nabla \omega ^{n+1}|^2 \nonumber \\&\quad + \frac{|(1+\nu k)\omega ^{n+1}\!-2\omega ^n\!+\omega ^{n-1}|^2}{2(1+\nu k)}= \frac{|~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^2}{1+\nu k} + 2k\,(f^n,\omega ^{n+1})\nonumber \\&\qquad - 2k\,(\partial (2\psi ^n-\psi ^{n-1},\omega ^{n+1}),(1+\nu k)\omega ^{n+1}-2\omega ^n+\omega ^{n-1})\nonumber \\&\quad \le \frac{|~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^2}{1+\nu k} + \frac{\mu k}{2}\,|\nabla \omega ^{n+1}|^2 + \frac{ck}{\mu }\,|f^n|_{H^{-1}}^2\nonumber \\&\qquad + \frac{ck}{\mu }\,|2\nabla \psi ^n-\nabla \psi ^{n-1}|_{L^\infty }^2|(1+\nu k)\omega ^{n+1}-2\omega ^n+\omega ^{n-1}|^2, \end{aligned}$$
(4.3)

giving (as before, we require \(k\le 1/\nu \))

$$\begin{aligned}&|~\,\!\!\![{\omega ^n,\omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 - \nu k\,|\omega ^{n+1}|^2 + \frac{3\mu k}{2}\,|\nabla \omega ^{n+1}|^2 \le \frac{|~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^2}{1+\nu k} + \frac{ck}{\mu }\,|f^n|_{H^{-1}}^2\nonumber \\&\quad + |(1+\nu k)\omega ^{n+1}\!-2\omega ^n\!+\omega ^{n-1}|^2 \Big ({c_3k^{1/2}M_\omega }/\mu - {\frac{1}{4}}\Big ). \end{aligned}$$
(4.4)

Setting \(\nu =\mu /(2c_0^{})\) and imposing the timestep restriction

$$\begin{aligned} k \le k_0 := \min \{\mu ^2/(4c_3 M_\omega )^2,1/\nu \}, \end{aligned}$$
(4.5)

this gives

$$\begin{aligned} |~\,\!\!\![{\omega ^n,\omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 + \mu k\,|\nabla \omega ^{n+1}|^2 \le \frac{|~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^2}{1+\nu k} + \frac{ck}{\mu }\,|f^n|_{H^{-1}}^2. \end{aligned}$$
(4.6)

Integrating using the Gronwall lemma, we arrive at the \(L^2\) bound

$$\begin{aligned}&|~\,\!\!\![{\omega ^{n+1},\omega ^{n+2}}]~\,\!\!\!|_{\nu k}^2 + \mu k\,|\nabla \omega ^{n+2}|^2 \le \mathrm {e}^{-\nu nk/2}|~\,\!\!\![{\omega ^0,\omega ^1}]~\,\!\!\!|_{\nu k}^2 + \frac{c}{\mu ^2}\,{\textstyle \sup }_j|f^j|_{H^{-1}}^2\nonumber \\&\quad \le |~\,\!\!\![{\omega ^0,\omega ^1}]~\,\!\!\!|_{\nu k}^2 + \frac{c}{\mu ^2}\,{\textstyle \sup }_j|f^j|_{H^{-1}}^2 =: M_0. \end{aligned}$$
(4.7)

The hypothesis (4.2) is now recovered by interpolation as before,

$$\begin{aligned} |\omega ^n|_{H^{1/2}}^2&\le c\,|\omega ^n|\,|\nabla \omega ^n| \le c\,|~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^{}|\nabla \omega ^n|\nonumber \\&\le c\,(\mu k)^{-1/2} \big (|~\,\!\!\![{\omega ^0,\omega ^1}]~\,\!\!\!|_{\nu k}^2 + (1/\mu +1/\mu ^2)\,{\textstyle \sup }_j |f^j|_{H^{-1}}^2\big ). \end{aligned}$$
(4.8)

Summing (4.6), we find

$$\begin{aligned} \mu k\,\sum _{j=n+1}^{n+{\lfloor 1/k\rfloor }} |\nabla \omega ^j|^2 \le |~\,\!\!\![{\omega ^{n-1},\omega ^n}]~\,\!\!\!|_{\nu k}^2 + c_\mu \,{\textstyle \sup }_j |f^j|_{H^{-1}}^2. \end{aligned}$$
(4.9)

It is clear that both bounds (4.7) and (4.9) can be made independent of the initial data for sufficiently large time, \(nk\ge t_0(\omega ^0,\omega ^1;f,\mu )\).

For the \(H^1\) estimate, we multiply (4.1) by \(-2k\Delta \omega ^{n+1}\) in \(L^2\) and use (3.10). Writing the nonlinear term as

$$\begin{aligned} \!N_1&:= (\partial (2\psi ^n-\psi ^{n-1},2\omega ^n-\omega ^{n-1}),\Delta \omega ^{n+1})\nonumber \\&\,= (\partial (2\nabla \psi ^n-\nabla \psi ^{n-1},\nabla \omega ^{n+1}),2\omega ^n-\omega ^{n-1})\nonumber \\&\quad - (\partial (2\psi ^n-\psi ^{n-1},\nabla \omega ^{n+1}),\nabla ((1+\nu k)\omega ^{n+1}-2\omega ^n+\omega ^{n-1})) \end{aligned}$$
(4.10)

and bounding the terms as

$$\begin{aligned} |N_1|&\le c\,|2\omega ^n-\omega ^{n-1}|_{L^4}^{}| \nabla ^2\omega ^{n+1}|_{L^2}^{}|2\omega ^n-\omega ^{n-1}|_{L^4}^{}\nonumber \\&+\, c\,|2\nabla \psi ^n\!-\nabla \psi ^{n-1}|_{L^\infty }^{}|\nabla ^2\omega ^{n+1}|_{L^2}^{}|\nabla ((1+\nu k)\omega ^{n+1}\!-2\omega ^n\!+\omega ^{n-1})|_{L^2}^{}\nonumber \\&\le \frac{\mu }{2}\,|\Delta \omega ^{n+1}|^2 + \frac{c}{\mu }\,|2\omega ^n-\omega ^{n-1}|^2|2\nabla \omega ^n-\nabla \omega ^{n-1}|^2\nonumber \\&+ \frac{ck^{-1/2}}{\mu }\,M_\omega \,|\nabla ((1+\nu k)\omega ^{n+1}\!-2\omega ^n\!+\omega ^{n-1})|^2, \end{aligned}$$
(4.11)

we find the differential inequality, using the bound (4.7),

$$\begin{aligned} \begin{aligned}&|~\,\!\!\![{\nabla \omega ^n,\nabla \omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 + \mu k\,|\Delta \omega ^{n+1}|^2 \le |~\,\!\!\![{\nabla \omega ^{n-1},\nabla \omega ^n}]~\,\!\!\!|_{\nu k}^2 \left( 1 + ck\,M_0/\mu \right) \\&\quad + |\nabla ((1+\nu k)\omega ^{n+1}\!-2\omega ^n\!+\omega ^{n-1})|^2 \Big ({c_3k^{1/2}M_\omega }/\mu - {\frac{1}{4}}\Big ) + ck\,|f^n|^2/\mu . \end{aligned} \end{aligned}$$
(4.12)

Using the earlier timestep restriction (4.5), we can suppress the second term on the r.h.s. Thanks to (4.9), for any \(n\in \{0,1,\ldots \}\) we can find \(n_*\in \{n,\ldots ,n+{\lfloor 1/k\rfloor }\}\) such that \(|~\,\!\!\![{\nabla \omega ^{n_*},\nabla \omega ^{n_*+1}}]~\,\!\!\!|_{\nu k}^2\le c(\mu )\,\big (|~\,\!\!\![{\omega ^0,\omega ^1}]~\,\!\!\!|_{\nu k}^2 + \sup _j|f^j|_{H^{-1}}^2\big )\). Arguing as before, we can use this to integrate (4.12) to give us a uniform \(H^1\) bound

$$\begin{aligned} |~\,\!\!\![{\nabla \omega ^n,\nabla \omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 \le M_1(|\nabla \omega ^0|,|\nabla \omega ^1|;\mu ,{\textstyle \sup }_j|f^j|) \end{aligned}$$
(4.13)

valid for all \(n\in \{0,1,\ldots \}\). Moreover, \(M_1\) can be made independent of the initial data \(|\nabla \omega ^0|\), \(|\nabla \omega ^1|\) for sufficiently large \(n\); in fact, we do not even need \(\omega ^0\), \(\omega ^1\in H^1\), although we still need them to be in \(H^\epsilon \) for the timestep restriction (4.5). Summing (4.12) and using (4.13), we find

$$\begin{aligned} \mu k\,\sum _{j=n+1}^{n+{\lfloor 1/k\rfloor }} |\Delta \omega ^j|^2 \le \tilde{M}_1({\textstyle \sup }_j|f^j|;\mu ) \qquad \mathrm{for~all}~nk\ge t_1(\omega ^0,\omega ^1,f;\mu ). \end{aligned}$$
(4.14)

Similarly, for the \(H^2\) estimate, we multiply (4.1) by \(2k\Delta ^2\omega ^{n+1}\) in \(L^2\) and write the nonlinear term as

$$\begin{aligned} N_2&:= (\partial (2\psi ^n-\psi ^{n-1},2\omega ^n-\omega ^{n-1}),\Delta ^2\omega ^{n+1})\nonumber \\&= -(\partial (2\nabla \psi ^n-\nabla \psi ^{n-1},2\omega ^n-\omega ^{n-1}),\nabla \Delta \omega ^{n+1})\nonumber \\&\quad - (\partial (2\psi ^n-\psi ^{n-1},2\nabla \omega ^n-\nabla \omega ^{n-1}),\nabla \Delta \omega ^{n+1}). \end{aligned}$$
(4.15)

Bounding this as

$$\begin{aligned} |N_2|&\le c\,|2\omega ^n-\omega ^{n-1}|_{L^\infty }^{}|2 \nabla \omega ^n-\nabla \omega ^{n-1}|_{L^2}^{}|\nabla \Delta \omega ^{n+1}|_{L^2}^{}\nonumber \\&\quad + c\,|2\nabla \psi ^n-\nabla \psi ^{n-1}|_{L^\infty }^{}|2\nabla ^2\omega ^n- \nabla ^2\omega ^{n-1}|_{L^2}^{}|\nabla \Delta \omega ^{n+1}|_{L^2}^{}\nonumber \\&\le \frac{\mu }{2}\,|\nabla \Delta \omega ^{n+1}|^2 + \frac{c}{\mu }\,|2\nabla \omega ^n-\nabla \omega ^{n-1}|^2 |~\,\!\!\![{\Delta \omega ^{n-1},\Delta \omega ^n}]~\,\!\!\!|_{\nu k}^2, \end{aligned}$$
(4.16)

we arrive at the differential inequality

$$\begin{aligned}&|~\,\!\!\![{\Delta \omega ^n,\Delta \omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 + \mu k\,|\nabla \Delta \omega ^{n+1}|^2\nonumber \\&\quad \le |~\,\!\!\![{\Delta \omega ^{n-1},\Delta \omega ^n}]~\,\!\!\!|_{\nu k}^2\left( 1 + ck M_1/\mu \right) + ck |\nabla f^n|^2/\mu . \end{aligned}$$
(4.17)

As with (4.12), this can be integrated to obtain the uniform bound

$$\begin{aligned} |~\,\!\!\![{\Delta \omega ^n,\Delta \omega ^{n+1}}]~\,\!\!\!|_{\nu k}^2 \le M_2({\textstyle \sup }_j|\nabla f^j|;\mu ) \end{aligned}$$
(4.18)

valid whenever \(nk\ge t_2(\omega ^0,\omega ^1,f;\mu )\).

To bound the difference \(\delta \omega ^n:=\omega ^n-\omega ^{n-1}\), we write (4.1) as

$$\begin{aligned} \frac{3\delta \omega ^{n+1}-\delta \omega ^n}{2k} + \partial (2\psi ^n-\psi ^{n-1},2\omega ^n-\omega ^{n-1}) = \mu \Delta \omega ^{n+1} + f^n. \end{aligned}$$
(4.19)

Multiplying by \(4k\delta \omega ^{n+1}\) and using (3.42) and (3.44), we find

$$\begin{aligned}&3|\delta \omega ^{n+1}|^2 + {\frac{1}{3}}|\delta \omega ^{n+1}-\delta \omega ^n|^2 = {\frac{1}{3}}|\delta \omega ^n|^2\nonumber \\&\quad + 2\mu k|\nabla \omega ^n|^2 - 2\mu k|\nabla \omega ^{n+1}|^2 - 2\mu k|\nabla \delta \omega ^{n+1}|^2\nonumber \\&\quad - 4k(\partial (2\psi ^n-\psi ^{n-1},2\omega ^n-\omega ^{n-1}),\delta \omega ^{n+1}) + 4k(f^n,\delta \omega ^{n+1}). \end{aligned}$$
(4.20)

Bounding the nonlinear term and suppressing harmless terms, we arrive at

$$\begin{aligned} 2|\delta \omega ^{n+1}|^2&\le {\frac{1}{3}}|\delta \omega ^n|^2 + 2\mu k|\nabla \omega ^n|^2 + ck^2|2\nabla \psi ^n-\nabla \psi ^{n-1}|_{L^\infty }^2\nonumber \\&\quad |2\nabla \omega ^n-\nabla \omega ^{n-1}|^2 + \frac{ck^2}{\mu }|f^n|_{H^{-1}}^2. \end{aligned}$$
(4.21)

Since the r.h.s. has been bounded uniformly for large \(nk\), we conclude that

$$\begin{aligned} |\delta \omega ^n|^2 \le k \hat{M}_0(f,\mu ) \end{aligned}$$
(4.22)

for \(nk\) sufficiently large. Arguing as in (3.53)–(3.57), we can improve the bound on \(|\delta \omega ^n|\) to \(\mathsf{O}(k)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tone, F., Wang, X. & Wirosoetisno, D. Long-time dynamics of 2d double-diffusive convection: analysis and/of numerics. Numer. Math. 130, 541–566 (2015). https://doi.org/10.1007/s00211-014-0670-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0670-9

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy