Skip to main content

Locality Preserving Matching

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Seeking reliable correspondences between two feature sets is a fundamental and important task in computer vision. This paper attempts to remove mismatches from given putative image feature correspondences. To achieve the goal, an efficient approach, termed as locality preserving matching (LPM), is designed, the principle of which is to maintain the local neighborhood structures of those potential true matches. We formulate the problem into a mathematical model, and derive a closed-form solution with linearithmic time and linear space complexities. Our method can accomplish the mismatch removal from thousands of putative correspondences in only a few milliseconds. To demonstrate the generality of our strategy for handling image matching problems, extensive experiments on various real image pairs for general feature matching, as well as for point set registration, visual homing and near-duplicate image retrieval are conducted. Compared with other state-of-the-art alternatives, our LPM achieves better or favorably competitive performance in accuracy while intensively cutting time cost by more than two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://sites.google.com/site/jiayima2013/home.

  2. The distribution of initial inlier percentages on the test data can be seen from the precision curve at \(\lambda =1\) in Fig. 2 as in this case all putative matches are considered as inliers.

  3. For real-world tasks such as multiple view stereo and SLAM, a better metric would be to use the inliers to retrieve the camera pose from stereo images and evaluate their accuracy (Bian et al. 2017). However, such camera pose estimation usually relies on an additional robust estimator such as RANSAC, which may not directly characterize the matching performance. Therefore, for the purpose of general feature matching, we only use precision and recall to characterize the performance.

  4. http://www.ti.uni-bielefeld.de/html/research/avardy/index.html.

  5. As different feature extraction used in this paper, the performance of HiSS (Churchill and Vardy 2013) and SSVS (Liu et al. 2013) is not exactly the same as reported in the original papers. In addition, the reimplemented SSVS method in this paper does not contain the mismatch removal introduced in (Liu et al. 2013).

References

  • Aanæs, H., Jensen, R. R., Vogiatzis, G., Tola, E., & Dahl, A. B. (2016). Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 120(2), 153–168.

    Article  MathSciNet  Google Scholar 

  • Adamczewski, K., Suh, Y., Mu Lee, K.: Discrete tabu search for graph matching. In: Proceedings of the 10th European conference on computer vision, pp. 109–117 (2015)

  • Bai, X., Yang, X., Latecki, L. J., Liu, W., & Tu, Z. (2010). Learning context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 861–874.

    Article  Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(24), 509–522.

    Article  Google Scholar 

  • Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Bian, J., Lin, W. Y., Matsushita, Y., Yeung, S. K., Nguyen, T. D., Cheng, M. M.: GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the 10th European conference on computer vision pattern Recognition, pp. 2828–2837 (2017)

  • Boughorbel, F., Koschan, A., Abidi, B., & Abidi, M. (2004). Gaussian fields: A new criterion for 3d rigid registration. Pattern Recognition, 37(7), 1567–1571.

    Article  Google Scholar 

  • Chen, J., Wang, Y., Luo, L., Yu, J. G., & Ma, J. (2016). Image retrieval based on image-to-class similarity. Pattern Recognition Letters, 83, 379–387.

    Article  Google Scholar 

  • Cho, M., Lee, K. M.: Mode-seeking on graphs via random walks. In: Proceedings of the European conference on computer vision pattern recognition, pp. 606–613 (2012)

  • Cho, M., Lee, K. M.: Progressive graph matching: Making a move of graphs via probabilistic voting. In: Proceedings of the European conference on computer vision pattern recognition, pp. 398–405 (2012)

  • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89, 114–141.

    Article  MATH  Google Scholar 

  • Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: Proceedings of the European conference on computer vision pattern recognition, pp. 220–226 (2005)

  • Churchill, D., & Vardy, A. (2013). An orientation invariant visual homing algorithm. Journal of Intelligent and Robotic Systems, 71(1), 3–29.

    Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Gao, Y., Ma, J., & Yuille, A. L. (2017). Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Transactions on Image Processing, 26(5), 2545–2560.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, X., & Cao, X. (2012). Good match exploration using triangle constraint. Pattern Recognition Letters, 33(7), 872–881.

    Article  Google Scholar 

  • Horaud, R., Forbes, F., Yguel, M., Dewaele, G., & Zhang, J. (2011). Rigid and articulated point registration with expectation conditional maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 587–602.

    Article  Google Scholar 

  • Hu, Y. T., Lin, Y. Y., Chen, H. Y., Hsu, K. J., & Chen, B. Y. (2015). Matching images with multiple descriptors: An unsupervised approach for locally adaptive descriptor selection. IEEE Transactions on Image Processing, 24(12), 5995–6010.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1981). Robust statistics. New York: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Jian, B., & Vemuri, B. C. (2011). Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1633–1645.

    Article  Google Scholar 

  • Jiang, J., Chen, C., Ma, J., Wang, Z., Wang, Z., & Hu, R. (2017). Srlsp: A face image super-resolution algorithm using smooth regression with local structure prior. IEEE Transactions on Multimedia, 19(1), 27–40.

    Article  Google Scholar 

  • Jinda-Apiraksa, A., Vonikakis, V., Winkler, S.: California-ND: An annotated dataset for near-duplicate detection in personal photo collections. In: QoMEX, pp. 142–147 (2013)

  • Kim, V. G., Lipman, Y., & Funkhouser, T. (2011). Blended intrinsic maps. ACM Transactions on Graphics, 30(4), 79.

    Article  Google Scholar 

  • Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Proceedings IEEE international conference on computer vision, pp. 1482–1489 (2005)

  • Li, X., & Hu, Z. (2010). Rejecting mismatches by correspondence function. International Journal of Computer Vision, 89(1), 1–17.

    Article  Google Scholar 

  • Lin, W. Y., Cheng, M. M., Lu, J., Yang, H., Do, M. N., Torr, P.: Bilateral functions for global motion modeling. In: Proceedings IEEE International Conference on Computer Vision, pp. 341–356 (2014)

  • Lin, W. Y., Cheng, M. M., Zheng, S., Lu, J., Crook, N.: Robust non-parametric data fitting for correspondence modeling. In: Proceedings IEEE International Conference on Computer Vision, pp. 2376–2383 (2013)

  • Lin, W. Y., Wang, F., Cheng, M. M., Yeung, S. K., Torr, P. H., Do, M. N., et al. (2018). CODE: Coherence based decision boundaries for feature correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1), 34–47.

    Article  Google Scholar 

  • Lipman, Y., Yagev, S., Poranne, R., Jacobs, D. W., & Basri, R. (2014). Feature matching with bounded distortion. ACM Transactions on Graphics, 33(3), 26.

    Article  MATH  Google Scholar 

  • Liu, H., Yan, S.: Common visual pattern discovery via spatially coherent correspondence. In: IEEE conference on computer vision and pattern recognition, pp. 1609–1616 (2010)

  • Liu, M., Pradalier, C., & Siegwart, R. (2013). Visual homing from scale with an uncalibrated omnidirectional camera. IEEE Transactions on Robotics, 29(6), 1353–1365.

    Article  Google Scholar 

  • Liu, Y., Dominicis, L., Wei, B., Chen, L., & Martin, R. (2015). Regularization based iterative point match weighting for accurate rigid transformation estimation. IEEE Transactions on Visualization and Computer Graphics, 21(9), 1058–1071.

    Article  Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Ma, J., Jiang, J., Liu, C., & Li, Y. (2017). Feature guided gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration. Information Sciences, 417, 128–142.

    Article  MathSciNet  Google Scholar 

  • Ma, J., Jiang, J., Zhou, H., Zhao, J., & Guo, X. (2018). Guided locality preserving feature matching for remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4435–4447.

    Article  Google Scholar 

  • Ma, J., Zhao, J., Guo, H., Jiang, J., Zhou, H., Gao, Y.: Locality preserving matching. In: Proceedings of the international joint conference on artificial intelligence, pp. 4492–4498 (2017)

  • Ma, J., Zhao, J., Jiang, J., Zhou, H.: Non-rigid point set registration with robust transformation estimation under manifold regularization. In: Proceedings of AAAI conference artificial intelligence, pp. 4218–4224 (2017)

  • Ma, J., Zhao, J., Jiang, J., Zhou, H., Zhou, Y., Wang, Z., Guo, X.: Visual homing via guided locality preserving matching. In: Proceedings of IEEE international conference on robotics and automation, pp. 7254–7261 (2018)

  • Ma, J., Zhao, J., Ma, Y., & Tian, J. (2015). Non-rigid visible and infrared face registration via regularized gaussian fields criterion. Pattern Recognition, 48(3), 772–784.

    Article  Google Scholar 

  • Ma, J., Zhao, J., Tian, J., Tu, Z., Yuille, A.: Robust estimation of nonrigid transformation for point set registration. In: Proceedings of IEEE conference computer vision pattern recognition, pp. 2147–2154 (2013)

  • Ma, J., Zhao, J., Tian, J., Yuille, A. L., & Tu, Z. (2014). Robust point matching via vector field consensus. IEEE Transactions on Image Processing, 23(4), 1706–1721.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, J., Zhao, J., & Yuille, A. L. (2016). Non-rigid point set registration by preserving global and local structures. IEEE Transactions on Image Processing, 25(1), 53–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., & Tian, J. (2015). Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6469–6481.

    Article  Google Scholar 

  • Maier, J., Humenberger, M., Murschitz, M., Zendel, O., Vincze, M.: Guided matching based on statistical optical flow for fast and robust correspondence analysis. In: Proceedings of European conference on computer vision, pp. 101–117 (2016)

  • Micchelli, C. A., & Pontil, M. (2005). On learning vector-valued functions. Neural Computation, 17(1), 177–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., et al. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1), 43–72.

    Article  Google Scholar 

  • Möller, R., & Vardy, A. (2006). Local visual homing by matched-filter descent in image distances. Biological Cybernetics, 95(5), 413–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262–2275.

    Article  Google Scholar 

  • Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity. North Chelmsford: Courier Corporation.

    MATH  Google Scholar 

  • Pele, O., Werman, M.: A linear time histogram metric for improved SIFT matching. In: Proceedings of European conference on computer vision, pp. 495–508 (2008)

  • Rusu, R. B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: Proc. IEEE International conference on robotics and automation, pp. 3212–3217 (2009)

  • Schroeter, D., & Newman, P. (2008). On the robustness of visual homing under landmark uncertainty. Intelligent Autonomous Systems, 10, 278–287.

    Google Scholar 

  • Tola, E., Lepetit, V., & Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 815–830.

    Article  Google Scholar 

  • Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156.

    Article  Google Scholar 

  • Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Proceedings of the European conference on computer vision, pp. 596–609 (2008)

  • Vedaldi, A., Fulkerson, B.: VLFeat - An open and portable library of computer vision algorithms. In: Proceedings of the ACM international conference on multimedia, pp. 1469–1472 (2010)

  • Wang, C., Wang, L., Liu, L.: Progressive mode-seeking on graphs for sparse feature matching. In: Proceedings of the 10th European conference on computer vision, pp. 788–802 (2014)

  • Wang, G., Wang, Z., Chen, Y., Liu, X., Ren, Y., & Peng, L. (2016). Learning coherent vector fields for robust point matching under manifold regularization. Neurocomputing, 216, 393–401.

    Article  Google Scholar 

  • Wang, G., Wang, Z., Chen, Y., Zhou, Q., Zhao, W.: Context-aware gaussian fields for non-rigid point set registration. In: Proceedings of the IEEE conference on computer vision pattern recognition, pp. 5811–5819 (2016)

  • Wang, G., Wang, Z., Chen, Y., Zhou, Q., & Zhao, W. (2016). Removing mismatches for retinal image registration via multi-attribute-driven regularized mixture model. Information Sciences, 372, 492–504.

    Article  Google Scholar 

  • Yang, K., Pan, A., Yang, Y., Zhang, S., Ong, S. H., & Tang, H. (2017). Remote sensing image registration using multiple image features. Remote Sensing, 9(6), 581.

    Article  Google Scholar 

  • Yang, Y., Ong, S. H., & Foong, K. W. C. (2015). A robust global and local mixture distance based non-rigid point set registration. Pattern Recognition, 48(1), 156–173.

    Article  Google Scholar 

  • Zhao, J., Ma, J.: Visual homing by robust interpolation for sparse motion flow. In: Proc. IEEE/RSJ International conference on intelligent robots and systems, pp. 1282–1288 (2017)

  • Zheng, Y., & Doermann, D. (2006). Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 643–649.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61773295, 61503288, 61501413, 41501505 and 61772512, and the Beijing Advanced Innovation Center for Intelligent Robots and Systems under Grant No. 2016IRS15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Lepetit.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhao, J., Jiang, J. et al. Locality Preserving Matching. Int J Comput Vis 127, 512–531 (2019). https://doi.org/10.1007/s11263-018-1117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-018-1117-z

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy