Pereiti prie turinio

Lagero polinomas

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Pirmi šeši Lagero polinomai.

Lagero polinomas (arba Lagero polinomai), pavadintas matematiko Edmondo Lagero (Edmond Laguerre) garbei, – kanoninis antros eilės tiesinės diferencialinės Lagero lygties:

sprendinys.

Ši lygtis turi nesinguliarius sprendinius tik tuomet, kai parametras n yra teigiamas arba lygus nuliui sveikas skaičius.

Šie polinomai dažniausiai yra žymimi bei sudaro polinomų seka, kurios narius galime apibrėžti kaip:[1]

Jie priklauso ortogonalių polinomų šeimai, jų vidinė (skaliarinė) sandauga yra apibrėžiama

Lagero polinomai yra svarbūs kvantinėje mechanikoje, kur jie aprašo radialinę Šredingerio lygties sprendinio vienaelektroniam atomui dalį.

Fizikoje Lagero polinomai yra normuojami kitaip negu matematikoje, todėl jie skiriasi nuo apibrėžtų čia per daugiklį (n faktorialas).

Keli pirmi polinomai

[redaguoti | redaguoti vikitekstą]

Žemiau pateiktos kelių pirmų Lagero polinomų matematinės išraiškos:

n
0
1
2
3
4
5
6

Taip pat skaitykite

[redaguoti | redaguoti vikitekstą]
  1. „Laguerre Polynomial -- from Wolfram MathWorld“. mathworld.wolfram.com. Nuoroda tikrinta 2024-02-03.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy