Minste kvadrats metode
Minste kvadrats metode er ein metode for handsaming av observasjonsmateriale, først nytta av Carl Friedrich Gauss og kort tid etter uavhengig offentleggjord av Adrien-Marie Legendre (1806). Metoden vert nytta når ein skal finne ein teoretisk samanheng ut frå observerte verdiar, og går når ein skal finne ein teoretisk samanheng ut frå observerte verdiar. Metoden går ut på å velje ei løysing slik at spriket mellom observasjonane er minst mogeleg. Storleikane ein skal rekne ut frå observasjonane skal tilfredsstille eit eller fleire vilkår, og dette er vanlegvis berre tilnærma mogeleg. Ved triangulering skal til dømes summen av dei målte vinklane i ein trekant vere 180°, men dette oppnår ein vanlegvis ikkje, på grunn av målefeil eller unøyaktige målingar. Ved minste kvadrats metode vel ein den løysinga som gjev at summen av kvadrata av avvika frå dei gjevne vilkåra er eit minimum. Om ein til dømes vil bestemme ei rett linje frå ei rekkje punkt som er observert, vel ein den linja der summen av kvadrata av avstandane frå dei observerte punkta til linja er så liten som mogeleg.
Det enklaste tilfellet av minste kvadrats metode finst når ein har gjort fleire målingar a1, a2, ..., an av same storleikar, og skal bestemme eller anslå storleiken ut frå desse målingane. Ein vel då som løysing det aritmetiske middelet (gjennomsnittet)
av løysingane. Det er den verdien som minimerer summen av kvadratavvika (a – a1)2 + (a – a2)2 + ... + (a – an)2.
Kjelder
[endre | endre wikiteksten]- «minste kvadraters metode» (2012-01-15). I Store norske leksikon.