login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255543
Unlucky array: Row n consists of unlucky numbers removed at the stage n of Lucky sieve.
20
2, 4, 5, 6, 11, 19, 8, 17, 39, 27, 10, 23, 61, 57, 45, 12, 29, 81, 91, 97, 55, 14, 35, 103, 121, 147, 117, 85, 16, 41, 123, 153, 199, 181, 177, 109, 18, 47, 145, 183, 253, 243, 277, 225, 139, 20, 53, 165, 217, 301, 315, 369, 345, 295, 157, 22, 59, 187, 247, 351, 379, 471, 465, 447, 325, 175, 24, 65, 207, 279, 403, 441, 567, 589, 603, 493, 381, 213
OFFSET
1,1
COMMENTS
The array A(row,col) is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
EXAMPLE
Top left corner of the square array:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89
19, 39, 61, 81, 103, 123, 145, 165, 187, 207, 229, 249, 271, 291, 313
27, 57, 91, 121, 153, 183, 217, 247, 279, 309, 343, 373, 405, 435, 469
45, 97, 147, 199, 253, 301, 351, 403, 453, 507, 555, 609, 661, 709, 763
55, 117, 181, 243, 315, 379, 441, 505, 571, 633, 697, 759, 825, 889, 951
85, 177, 277, 369, 471, 567, 663, 757, 853, 949, 1045, 1141, 1239, 1333, 1431
109, 225, 345, 465, 589, 705, 829, 945, 1063, 1185, 1305, 1423, 1549, 1669, 1789
139, 295, 447, 603, 765, 913, 1075, 1227, 1377, 1537, 1689, 1843, 1999, 2155, 2313
157, 325, 493, 667, 835, 999, 1177, 1347, 1513, 1687, 1861, 2029, 2205, 2367, 2535
...
MATHEMATICA
rows = cols = 12; L = 2 Range[0, 2000] + 1; A = Join[{2 Range[cols]}, Reap[For[n = 2, n <= rows, r = L[[n++]]; L0 = L; L = ReplacePart[L, Table[r i -> Nothing, {i, 1, Length[L]/r}]]; Sow[Complement[L0, L][[1 ;; cols]]]]][[2, 1]]]; Table[A[[n - k + 1, k]], {n, 1, Min[rows, cols]}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 15 2016 *)
PROG
(Scheme)
(define (A255543 n) (A255543bi (A002260 n) (A004736 n)))
(define (A255543bi row col) ((rowfun_n_for_A255543 row) col))
;; Uses the memoizing definec-macro:
(definec (rowfun_n_for_A255543 n) (if (= 1 n) (lambda (n) (+ n n)) (let* ((rowfun_for_remaining (rowfun_n_for_A000959sieve (- n 1))) (eka (A000959 n))) (compose rowfun_for_remaining (lambda (n) (* eka n))))))
(definec (rowfun_n_for_A000959sieve n) (if (= 1 n) A005408shifted (let* ((prevrowfun (rowfun_n_for_A000959sieve (- n 1))) (everynth (prevrowfun n))) (compose-funs prevrowfun (nonzero-pos 1 1 (lambda (i) (modulo i everynth)))))))
(definec (A000959 n) ((rowfun_n_for_A000959sieve n) n))
(define (A005408shifted n) (- (* 2 n) 1))
CROSSREFS
Permutation of A050505.
Row 1: A005843 (after zero), Row 2: A016969.
Column 1: A219178.
Main diagonal: A255549. The first subdiagonal: A255550 (apart from the initial term).
Transpose: A255544.
This is array A255545 without its leftmost column, A000959.
Cf. also arrays A255127 and A255551.
Sequence in context: A194607 A194637 A194600 * A256458 A376702 A276001
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Feb 25 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy