Gaz

stan skupienia materii

Gazstan skupienia materii, w którym ciało fizyczne łatwo zmienia kształt i zajmuje całą dostępną mu przestrzeń[1]. Właściwości te wynikają z własności cząsteczek, które w fazie gazowej mają pełną swobodę ruchu. Wszystkie one cały czas przemieszczają się w przestrzeni zajmowanej przez gaz i nigdy nie zatrzymują się w jednym miejscu. Między cząsteczkami nie występują żadne oddziaływania dalekozasięgowe, a jeśli, to bardzo słabe. Jedyny sposób, w jaki cząsteczki na siebie oddziałują, to zderzenia. Oprócz tego, jeśli gaz jest zamknięty w naczyniu, to jego cząsteczki stale zderzają się ze ściankami tego naczynia, wywierając na nie określone i stałe ciśnienie.

Termin wprowadzony przez flamandzkiego lekarza Johanna Helmonta w XVII wieku wzorem gr. χάος ‘cháos’[2].

Cząsteczki gazu przemieszczają się z różną szybkością, a rozkład tych szybkości ma charakter całkowicie statystyczny (rozkład Maxwella). Średnia szybkość poruszania się cząsteczek w gazie jest zależna wyłącznie od ich masy cząsteczkowej i temperatury. Podczas obniżania temperatury gazu maleje średnia szybkość cząsteczek, zaś zwiększanie ciśnienia powoduje zmniejszenie średniej odległości między nimi. Obniżanie temperatury lub zwiększanie ciśnienia prowadzi w końcu do skroplenia lub resublimacji gazu. Zamiana gazu w ciecz lub ciało stałe wynika z faktu, że w pewnym momencie energia oddziaływań międzycząsteczkowych (sił van der Waalsa, wiązań wodorowych itp.) staje się większa od energii kinetycznej cieplnego ruchu cząsteczek.

W fizyce przyjmuje się często prosty model gazu doskonałego, w którym cząsteczki gazu nie przyciągają się i nie mają objętości własnej. Teorie i zależności termodynamiczne wywiedzione z założeń gazu doskonałego sprawdzają się dość dobrze (na ogół) w przypadku niezbyt dużych ciśnień oraz niezbyt niskich temperatur. W innych przypadkach prawa te jednak zawodzą i wtedy stosuje się bardziej złożone modele gazów i tworzy dokładniejsze teorie i zależności (zob. gaz rzeczywisty, równanie van der Waalsa, wirialne równanie stanu).

Interesującą cechą gazu (a ściślej gazu doskonałego) jest to, że objętość przez niego zajmowana (w danej temperaturze i ciśnieniu) jest stała, niezależnie od rodzaju cząsteczek, jakie są w gazie, i zależy wyłącznie od liczby tych cząsteczek. Innymi słowy, jeśli weźmiemy np. 1 litr wodoru i 1 litr tlenu (oba przy tym samym ciśnieniu i temperaturze), to w obu objętościach będzie dokładnie taka sama liczba cząsteczek. Jest to tzw. prawo Avogadra.

Aby jednoznacznie określić stan gazu, poza składem chemicznym (ułamki wagowe lub molowe) i temperaturą należy podać gęstość gazu lub jego ciśnienie. Zamiast gęstości można podać równoważnie objętość molową lub stężenie gazu.

Dla dowolnego gazu:

  • objętość jednego mola gazu w warunkach normalnych: V = 22,4 dm³
  • liczność gazu w (liczba moli):
  • stężenie molowe gazu:
  • objętość molowa gazu:

gdzie: m – masa gazu, V – objętość gazu, N – liczba cząsteczek, NAliczba Avogadra, Mmasa molowa.

Dla gazu doskonałego:

gdzie: R – uniwersalna stała gazowa, T – temperatura.

Zobacz też

edytuj

Przypisy

edytuj
  1. gaz, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-11-28].
  2. Słownik Wyrazów Obcych. slownik-online.pl. [zarchiwizowane z tego adresu (2014-02-02)]., według innej wersji słowo to powstało pod wpływem flamandzkiego wyrazu gahst ‘duch’ (por. ang. ghost i niem. Geist). Rajmund Sołoniewicz Rozwój podstawowych pojęć chemicznych Warszawa 1986 ISBN 83-204-0736-2.

Linki zewnętrzne

edytuj
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy