Przejdź do zawartości

Mikroskop fluorescencyjny

Z Wikipedii, wolnej encyklopedii
Mikroskop (epi-)fluorescencyjny Olympus BX61, sprzężony z kamerą cyfrową.

Mikroskop fluorescencyjnymikroskop świetlny używany w badaniach substancji organicznych i nieorganicznych, którego działanie oparte jest na zjawisku fluorescencji i fosforescencji, zamiast, lub razem ze zjawiskami odbicia i absorpcji światła (co jest wykorzystane w klasycznym mikroskopie optycznym).

W roku 2014 za rozwój technik mikroskopii fluorescencyjnej, pozwalających na uzyskanie rozdzielczości rzędu 0,2 μm, została przyznana Nagroda Nobla w dziedzinie chemii[1][2].

Fluoroscencja próbki może być pochodzenia naturalnego (np. fluoroscencja chlorofilu) lub być wynikiem dołączenia (kowalencyjnie lub poprzez jakikolwiek inny typ oddziaływań fizyko-chemicznych między substancjami) do elementów obserwowanej próbki fluoroforów, czyli substancji chemicznych, które fluoryzują po wzbudzeniu światłem o określonej długości. Drugi sposób jest najczęściej wykorzystywanym w biologii, a w szczególności w biologii molekularnej, gdyż pozwala, poprzez znajomość oddziaływań, na wyznakowanie interesujących elementów komórki (np. białek, czy organelli), fluoroforami o zadanych właściwościach (np. barwie emisji).

Większość używanych mikroskopów fluorescencyjnych to mikroskopy epi-fluorescencyjne. Oznacza to, że wzbudzenie próbki falą świetlną, jak i obserwacja fali wzbudzonej zachodzą z tej samej strony próbki (obiektyw pełni rolę kondensora; w przeciwieństwie do mikroskopów trans, gdzie fala światła wzbudzającego przechodzi przez próbkę i detekcja światła wzbudzonego odbywa się po jej drugiej stronie).

Schemat działania mikroskopu epi-fluorescencyjnego.

Mikroskopy fluorescencyjne stały się ważnym narzędziem w biologii, stając się podstawą do rozwoju bardziej zaawansowanych technik mikroskopii fluorescencyjnej, takich jak:

Przykłady obrazów

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. Ann Fernholm: How the optical microscope became a nanoscope. The Royal Swedish Academy of Sciences, 2014-10-08. [dostęp 2014-10-08].
  2. Måns Ehrenberg: Super-resolved fluorescence microscopy. The Royal Swedish Academy of Sciences, 2014-10-08. [dostęp 2014-10-08].

Bibliografia

[edytuj | edytuj kod]
  • Bradbury, S. and Evennett, P., Fluorescence microscopy., Contrast Techniques in Light Microscopy., BIOS Scientific Publishers, Ltd., Oxford, United Kingdom (1996).
  • Rost, F. and Oldfield, R., Fluorescence microscopy., Photography with a Microscope, Cambridge University Press, Cambridge, United Kingdom (2000).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy