Sedeniony
Sedeniony (symbol ) – rodzina liczb hiperzespolonych.
Sedeniony tworzą 16-wymiarową algebrę nad ciałem liczb rzeczywistych, utworzoną przez zastosowanie konstrukcji Cayleya-Dicksona do oktonionów.
Każdy sedenion można przedstawić jako kombinację liniową sedenionów które tworzą bazę przestrzeni liniowej sedenionów nad ciałem liczb rzeczywistych.
Działania na sedonionach
[edytuj | edytuj kod]Tak jak w przypadku oktonionów, mnożenie sedenionów nie jest przemienne ani łączne. Jest ono rozdzielne względem dodawania. Sedeniony mają multiplikatywne odwrotności oraz jako element neutralny mnożenia. Sedeniony są też najmniejszą rodziną liczb hiperzespolonych zawierającą dzielniki zera.
Dodawanie na sedonionach jest dodawaniem wektorów w przestrzeni 16-wymiarowej nad ciałem liczb rzeczywistych. Natomiast mnożenie definiuje poniższa tabela (ze względu na rozdzielność mnożenia względem dodawania):
· | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
e1 | e1 | −1 | e3 | −e2 | e5 | −e4 | −e7 | e6 | e9 | −e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 |
e2 | e2 | −e3 | −1 | e1 | e6 | e7 | −e4 | −e5 | e10 | e11 | −e8 | −e9 | −e14 | −e15 | e12 | e13 |
e3 | e3 | e2 | −e1 | −1 | e7 | −e6 | e5 | −e4 | e11 | −e10 | e9 | −e8 | −e15 | e14 | −e13 | e12 |
e4 | e4 | −e5 | −e6 | −e7 | −1 | e1 | e2 | e3 | e12 | e13 | e14 | e15 | −e8 | −e9 | −e10 | −e11 |
e5 | e5 | e4 | −e7 | e6 | −e1 | −1 | −e3 | e2 | e13 | −e12 | e15 | −e14 | e9 | −e8 | e11 | −e10 |
e6 | e6 | e7 | e4 | −e5 | −e2 | e3 | −1 | −e1 | e14 | −e15 | −e12 | e13 | e10 | −e11 | −e8 | e9 |
e7 | e7 | −e6 | e5 | e4 | −e3 | −e2 | e1 | −1 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | −e8 |
e8 | e8 | −e9 | −e10 | −e11 | −e12 | −e13 | −e14 | −e15 | −1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
e9 | e9 | e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 | −e1 | −1 | −e3 | e2 | −e5 | e4 | e7 | −e6 |
e10 | e10 | e11 | e8 | −e9 | −e14 | −e15 | e12 | e13 | −e2 | e3 | −1 | −e1 | −e6 | −e7 | e4 | e5 |
e11 | e11 | −e10 | e9 | e8 | −e15 | e14 | −e13 | e12 | −e3 | −e2 | e1 | −1 | −e7 | e6 | −e5 | e4 |
e12 | e12 | e13 | e14 | e15 | e8 | −e9 | −e10 | −e11 | −e4 | e5 | e6 | e7 | −1 | −e1 | −e2 | −e3 |
e13 | e13 | −e12 | e15 | −e14 | e9 | e8 | e11 | −e10 | −e5 | −e4 | e7 | −e6 | e1 | −1 | e3 | −e2 |
e14 | e14 | −e15 | −e12 | e13 | e10 | −e11 | e8 | e9 | −e6 | −e7 | −e4 | e5 | e2 | −e3 | −1 | e1 |
e15 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | e8 | −e7 | e6 | −e5 | −e4 | e3 | e2 | −e1 | −1 |