Przejdź do zawartości

Współczynnik stechiometryczny

Z Wikipedii, wolnej encyklopedii

Współczynnik stechiometryczny – stały współczynnik w równaniu stechiometrycznym danej reakcji chemicznej. Wartość współczynnika stechiometrycznego wynika bezpośrednio z bilansu atomów[1].

Nie każde równanie reakcji chemicznej jest równaniem stechiometrycznym. Np. podczas częściowego utlenienia węgla do tlenku węgla i dwutlenku węgla, określenie w jakiej części węgiel wbuduje się w cząsteczkę tlenku węgla, a w jakiej w cząsteczkę dwutlenku węgla (jaki jest stosunek molowy produktów CO/CO2), zależy wyłącznie od warunków przeprowadzenia doświadczenia.

Praktyczny sens współczynników

[edytuj | edytuj kod]

W równaniach reakcji chemicznych współczynniki stechiometryczne pisze się tradycyjnie przed wzorem reagenta. Np. zapis:

1 CH4 + 2 O21 CO2 + 2 H2O.

oznacza, że gdy w układzie reakcji było początkowo 1 mol metanu i dwa mole tlenu to po pełnym ich przereagowaniu powstanie jeden mol dwutlenku węgla i dwa mole wody. Zaznaczone pogrubionym pismem liczby „2” i „1” przed wzorem tlenu i wody są właśnie współczynnikami stechiometrycznymi. W praktyce we wzorach chemicznych współczynnik stechiometryczny „1” zwykle się dla uproszczenia pomija.

Znając współczynniki stechiometryczne i masy cząsteczkowe reagentów można w prosty sposób obliczać np. ile produktu otrzyma się z określonej ilości substratów. W przypadku omawianej wyżej reakcji spalania metanu, z jej równania reakcji wynika, że:

  • z jednego mola metanu otrzymać można maksymalnie 1 mol dwutlenku węgla i dwa mole wody
  • do pełnego spalenia 1 mola metanu konieczne są dwa mole tlenu.
  • wiedząc, że metan ma masę cząsteczkową równą 16,0425 g/mol, dwutlenek węgla 44,0095 g/mol i woda 18,01524, można łatwo obliczyć, że całkowite spalenie 16,0425 g metanu spowoduje powstanie 44,0095 · 1 = 44,0095 g dwutlenku węgla i 18,01524 · 2 = 36,03048 g wody.

Dokładna definicja

[edytuj | edytuj kod]

Jakkolwiek współczynniki stechiometryczne były intuicyjnie stosowane od co najmniej połowy XIX wieku, dopiero w latach 50. XX wieku belgijski chemik Ilya Prigogine podał dokładną i niesprzeczną definicję tego pojęcia[2]:

W układzie, w którym zachodzi jedna reakcja chemiczna, w której uczestniczy i reagentów, współczynnik stechiometryczny i-tego reagenta jest dany wzorem:
a zatem
gdzie to liczba cząsteczek -tego reagenta w układzie reakcji, a to współczynnik postępu reakcji równy stosunkowi rzeczywiście otrzymanych produktów do teoretycznej, maksymalnej ich ilości możliwej do uzyskania w danej reakcji.

W tym ujęciu współczynnik stechiometryczny można interpretować jako maksymalny możliwy stopień przereagowania -tego reagenta w danym układzie reakcji. Jeśli reakcja jest w trakcie, lub nie zaszła do końca, lub wyjściowe proporcje substratów były inne niż optymalne, to jej współczynniki stechiometryczne się nie zmieniają – jednak nie oznaczają one wówczas rzeczywistych proporcji w jakich reagenty uczestniczyły w reakcji. W rzeczywistych układach – reakcje bardzo rzadko zachodzą w 100%. W optymalnych warunkach dochodzą one do stanu równowagi chemicznej, w której szybkość analizowanej reakcji i reakcji odwrotnej się wyrównują. Proporcje reagentów w trakcie reakcji, a także w stanie równowagi odbiegają od ich współczynników stechiometrycznych o stopień ich przereagowania.

Sprawy komplikują się jeszcze bardziej dla układów, w których zachodzi jednocześnie kilka konkurencyjnych reakcji chemicznych. Tego rodzaju układy stanowią np. podstawę funkcjonowania organizmów żywych. Definicja współczynników stechiometrycznych dla takich układów wygląda następująco[3]:

W układzie, w którym zachodzi k reakcji, w których uczestniczy i reagentów ich współczynniki stechiometryczne dane są wzorem:
a zatem zmiana liczby cząsteczek -tego reagenta dana jest wzorem:

W układach, w których zachodzi wiele reakcji jednocześnie, ustala się w końcu stan równowagi, który jest jednak zwykle trudny do przewidzenia, a rzeczywiste proporcje reagentów mogą znacząco odbiegać od ich współczynników stechiometrycznych. Istnieją również oscylacyjne układy reakcji, które dochodzą do równowagi przez serię cyklicznych, powtarzających się przemian, w których cyklicznie zmieniają się proporcje reagentów.

Przypisy

[edytuj | edytuj kod]
  1. J. Szarawara, J. Skrzypek: Podstawy inżynierii reaktorów chemicznych, rozdział I. Warszawa: WNT, 1980.
  2. Chemical Thermodynamics. W: Ilya Prigogine, Raymond Defay (tłum. D.H. Everett): Treatise on thermodynamics based on the methods of Gibbs and De Donder. London, New York: Longmans, Green, 1954. OCLC 3189989.
  3. Ilya Prigogine: Introduction to thermodynamics of irreversible processes. Wyd. 3. New York: Interscience Publishers, 1967, s. ?. ISBN 978-0-470-69928-7. OCLC 535537.

Bibliografia

[edytuj | edytuj kod]
  • Tadeusz Senkowski, Stechiometria, Uniwersytet Jagielloński, Kraków 1989, ISBN 83-233-0290-1.
  • Marek Frączak, Zarys stechiometrii w ujęciu algebry liniowej, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin 1991.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy