9.3. Математические функции и операторы

Математические операторы определены для множества типов PostgreSQL. Как работают эти операции с типами, для которых нет стандартных соглашений о математических действиях (например, с типами даты/времени), мы опишем в последующих разделах.

В Таблице 9-2 перечислены все доступные математические операторы.

Таблица 9-2. Математические операторы

ОператорОписаниеПримерРезультат
+сложение2 + 35
-вычитание2 - 3-1
*умножение2 * 36
/деление (при целочисленном делении остаток отбрасывается)4 / 22
%остаток от деления5 % 41
^возведение в степень2.0 ^ 3.08
|/квадратный корень|/ 25.05
||/кубический корень||/ 27.03
!факториал5 !120
!!факториал (префиксная форма)!! 5120
@модуль числа (абсолютное значение)@ -5.05
&битовый AND91 & 1511
|битовый OR32 | 335
#битовый XOR17 # 520
~битовый NOT~1-2
<<битовый сдвиг влево1 << 416
>>битовый сдвиг вправо8 >> 22

Битовые операторы работают только с целостными типами данных, тогда как другие и работают и с остальными числовыми типами. Битовые операции также работают с битовыми строками bit и bit varying, как показано в Таблице 9-11.

В Таблице 9-3 перечислены все существующие математические функции. Сокращение dp в ней обозначает тип double precision (плавающее с двойной точностью). Многие из этих функций имеют несколько форм с разными типами аргументов. За исключением случаев, где это указано явно, любая форма функции возвращает результат того же типа, что и аргумент. Функции, работающие с данными double precision, в массе своей используют реализации из системных библиотек сервера, поэтому точность и поведение в граничных случаях может зависеть от системы сервера.

Таблица 9-3. Математические функции

ФункцияТип результатаОписаниеПримерРезультат
abs(x)тип аргументамодуль числа (абсолютное значение)abs(-17.4)17.4
cbrt(dp)dpкубический кореньcbrt(27.0)3
ceil(dp или numeric)тип аргументанаименьшее целое не меньше аргументаceil(-42.8)-42
ceiling(dp или numeric)тип аргументанаименьшее целое не меньше аргумента (синоним ceil)ceiling(-95.3)-95
degrees(dp)dpпреобразование радианов в градусыdegrees(0.5)28.6478897565​412
div(y numeric, x numeric)numericцелочисленный результат y/xdiv(9,4)2
exp(dp или numeric)тип аргументаэкспонентаexp(1.0)2.7182818284​5905
floor(dp или numeric)тип аргументанаибольшее целое не больше аргументаfloor(-42.8)-43
ln(dp или numeric)тип аргументанатуральный логарифмln(2.0)0.6931471805​59945
log(dp или numeric)тип аргументалогарифм по основанию 10log(100.0)2
log(b numeric, x numeric) numericлогарифм по основанию blog(2.0, 64.0)6.0000000000
mod(y, x)зависит от типов аргументовостаток от деления y/xmod(9,4)1
pi()dpконстанта "π"pi()3.1415926535​8979
power(a dp, b dp)dpa возводится в степень bpower(9.0, 3.0)729
power(a numeric, b numeric) numerica возводится в степень bpower(9.0, 3.0)729
radians(dp)dpпреобразование градусов в радианыradians(45.0)0.7853981633​97448
round(dp или numeric)тип аргументаокругление до ближайшего целогоround(42.4)42
round(v numeric, s int) numericокругление v до s десятичных знаковround(42.4382, 2)42.44
sign(dp или numeric)тип аргументазнак аргумента (-1, 0, +1)sign(-8.4)-1
sqrt(dp или numeric)тип аргументаквадратный кореньsqrt(2.0)1.4142135623​731
trunc(dp или numeric)тип аргументаокругление к нулюtrunc(42.8)42
trunc(v numeric, s int) numericокругление к 0 до s десятичных знаковtrunc(42.4382, 2)42.43
width_bucket(op numeric, b1 numeric, b2 numeric, count int)intвозвращает номер группы, в которую попадёт op в гистограмме равной глубины с числом групп count, в диапазоне от b1 до b2width_bucket(5.35, 0.024, 10.06, 5)3
width_bucket(op dp, b1 dp, b2 dp, count int) intвозвращает номер группы, в которую попадёт op в гистограмме равной глубины с числом групп count, в диапазоне от b1 до b2width_bucket(5.35, 0.024, 10.06, 5)3

В Таблице 9-4 перечислены все функции для генерации случайных чисел.

Таблица 9-4. Случайные функции

ФункцияТип результатаОписание
random()dpслучайное число в диапазоне 0.0 <= x < 1.0
setseed(dp)voidзадаёт отправную точку для последующих вызовов random() (значение между -1.0 и 1.0, включая границы)

Характеристики значений, возвращаемых функцией random() зависят от системы. Для применения в криптографии они непригодны; альтернативы описаны в pgcrypto.

Наконец, в Таблице 9-5 перечислены все тригонометрические функции. Все эти функции принимают аргументы и возвращают значения типа double precision. Аргументы тригонометрических функций выражаются в радианах. Также в радианах выражаются результаты обратных функций. Для преобразования единиц могут быть полезны упомянутые выше функции radians() и degrees().

Таблица 9-5. Тригонометрические функции

ФункцияОписание
acos(x)арккосинус
asin(x)арксинус
atan(x)арктангенс
atan2(y, x)арктангенс y/x
cos(x)косинус
cot(x)котангенс
sin(x)синус
tan(x)тангенс
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy