Saltar para o conteúdo

Acroleína

Origem: Wikipédia, a enciclopédia livre.
Acroleina
Alerta sobre risco à saúde
Nome IUPAC Acrylaldehyde
Outros nomes Acraldehyde
Acrylic Aldehyde
Allyl Aldehyde
Ethylene Aldehyde
Identificadores
Número CAS 107-02-8
SMILES
Propriedades
Fórmula molecular C3H4O
Massa molar 56.06 g/mol
Aparência Liquido incolor ou levemente amarelado.
Odor irritante.
Ponto de fusão

-88 °C (-126 °F)

Ponto de ebulição

53 °C (127 °F)

Solubilidade em água Appreciable (> 10%)
Riscos associados
MSDS External MSDS[1]
Principais riscos
associados
Altamente venenoso. Causa
irritação nas
membranas. Liquido
e vapor altamente inflamáveis.
NFPA 704
3
4
3
 
Ponto de fulgor -26°C
Compostos relacionados
Aldeídos e cetonas relacionados Propanal
Crotonaldeído ((E)-2-Butenal)
Metil vinil cetona (Butenona)
Compostos relacionados Álcool alílico
Ácido acrílico
Página de dados suplementares
Estrutura e propriedades n, εr, etc.
Dados termodinâmicos Phase behaviour
Solid, liquid, gas
Dados espectrais UV, IV, RMN, EM
Exceto onde denotado, os dados referem-se a
materiais sob condições normais de temperatura e pressão

Referências e avisos gerais sobre esta caixa.
Alerta sobre risco à saúde.

A acroleína também chamada de propenal, possui a fórmula química C3H4O. É um composto de aldeído etilênico obtido pela desidratação da glicerina por bactérias. Tem características líquidas possuindo odor e sabor amargo. Pode ser produzido no motor quando este utiliza como combustível o óleo vegetal cru. Industrialmente é produzido pela oxidação seletiva de propileno, usando catalisadores à base de bismuto-molibdato. A acroleína pode ainda ser oxidada para ácido acrílico utilizando catalisadores de óxido misto à base de molibdénio e vanádio. Estudos recentes têm mostrado que a adição de vapor na mistura de gás melhora significativamente o rendimento de ácido acrílico.[2][3]

Quando o glicerol (C3H8O3) é aquecido a 150 °C, ele se decompõe em acroleína.

A acroleína é preparada industrialmente pela oxidação do propeno. O processo utiliza ar como fonte de oxigênio e requer óxidos metálicos como catalisadores heterogêneos.[4]

CH2CHCH3 + O2 + H2O → CH2CHCHO

Cerca de 500.000 toneladas de acroleína são produzidas desta forma anualmente na América do Norte, Europa e Japão. Além disso, todo o ácido acrílico é produzido através da formação transiente da acroleína. O principal desafio é, de fato, a superoxidação da acroleína a COx competindo para a formação desse ácido.[5] O propano representa uma matéria-prima promissora, mas um desafio para a síntese de acroleína (e ácido acrílico).

Quando o glicerol (também chamado glicerina) é aquecido a 280 °C, decompõe-se em acroleína:

(CH2OH)2CHOH → CH2 = CHCHO + 2H2O

Essa forma é interessante quando o glicerol é co-gerado pela produção de biodiesel a partir de óleos vegetais ou de gorduras animais.[6] A desidratação do glicerol foi demonstrado, mas não provou ser competitiva com a rota de petroquímicos.[7]

Nicho ou Métodos de Laboratório

[editar | editar código-fonte]

A rota industrial original para a acroleína, desenvolvido pela Degussa, envolve a condensação de formaldeído e acetaldeído:

HCHO + CH3CHO → CH2=CHCHO + H2O

Acroleína pode também ser produzida em escala laboratorial por meio da reação de bissulfato de potássio em glicerol (glicerina).[8]

A acroleína é um composto relativamente eletrofílico e reativo, fatores que resultam em sua elevada toxicidade. É um bom aceptor de Michael, o que permite sua reação com tióis. Ela forma acetais, como o derivado do pentaeritritol, o dialil pentanotriol. A acroleína participa em muitas reações de Diels-Alder, um precursor para alguns perfumes comerciais.[4]

A acroleína é utilizada principalmente como um herbicida de contato para controlar ervas daninhas submersas e flutuantes, bem como algas em canais de irrigação. Ela é usada a um nível de 10 p.p.m. em águas de irrigação e de recirculação. Na indústria do petróleo e de gás, é utilizada como um biocida na perfuração de águas, bem como um agente de limpeza para sulfeto de hidrogênio e mercaptanas.[4]

Precursor químico

[editar | editar código-fonte]

Muitos compostos úteis são feitos a partir de acroleína, explorando assim sua bifuncionalidade. A metionina, um aminoácido, é produzida por adição de metanotiol seguido pela síntese de Strecker. A acroleína condensa com acetaldeídos e aminas para formar piridinas metílicas. Ela também é planejada para ser um intermediário na síntese Skraup de quinolinas, mas raramente é usada como tal, devido à sua instabilidade.

A acroleína pode polimerizar na presença de oxigênio e de água a concentrações superiores a 22%. A cor e textura do polímero depende das condições. Com o tempo, ele irá polimerizar com si próprio para formar um sólido amarelo claro. Em água, formará um plástico duro e poroso.

As vezes, é usada como um fixador para a preparação de espécimes biológicas para microscopia de elétrons.[9]

Riscos para a saúde

[editar | editar código-fonte]

A acroleína é tóxica e é fortemente irritante para a pele, os olhos e para as vias aéreas.[4] A via metabólica principal para a acroleína é a alquilação de glutationa. A Organização Mundial de Saúde (OMS) sugere uma "dose oral de acroleína tolerável" de 7,5 ug/dia por quilograma de peso corporal. Embora a acroleína esteja presente em batatas fritas, os níveis são apenas alguns microgramas por quilograma.[10] Em resposta à exposição ocupacional a acroleína, o Ocupacional Safety and Health Administration dos EUA estabeleceu um limite permitido a 0,1 ppm (0,25 mg/m3) a uma média ponderada no tempo de oito horas.[11]

Fumaça do cigarro

[editar | editar código-fonte]

Existem conexões entre a acroleína gasosa no fumo dos cigarros de tabaco e o risco de câncer de pulmão.[12] Em termos de "quociente de saúde não carcinogênico" para componentes na fumaça do cigarro, a acroleína domina contribuindo 40 vezes mais do que o próximo componente, cianeto de hidrogênio.[13] O teor de acroleína do fumo do cigarro depende do tipo de cigarro e adicionou glicerina perfazendo até 220 ug de acroleína por cigarro.[14][15] Importante, ao passo que a concentração dos constituintes de fumo da corrente principal pode ser reduzido por filtros, este não tem efeito significativo sobre a composição do fumo de corrente secundária onde acroleína normalmente reside, e que é inalada pelo fumo passivo.[16][17] Cigarros eletrônicos geram apenas níveis negligenciáveis de acroleína (inferior a 10 mcg "por sopro").[18][19]

Quimioterapia metabólica

[editar | editar código-fonte]

Tratamentos quimioterápicos com ciclofosfamida e ifosfamida resultam na produção de acroleína.[20] A acroleína produzida durante o tratamento com ciclofosfamida é retida na bexiga urinária e se não for tratada pode causar cistite hemorrágica. 

Métodos analíticos

[editar | editar código-fonte]

O "teste de acroleína" é para a presença de glicerina ou gorduras. Uma amostra é aquecida, com bissulfato de potássio, e a acroleína é libertada se o teste é positivo. Quando uma gordura é aquecida na presença de um agente de desidratação, tal como bissulfato de potássio (KHSO4), a porção glicerol com da gordura da molécula é desidratada para formar o aldeído a acroleína, que tem o odor peculiar a queimado gordura de cozinha. Existem outros métodos mais modernos.[10]

Referências

  1. External MSDS
  2. Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts (PDF). Tese de doutorado. [S.l.: s.n.] 2011. pp. 1–8; 98–100 
  3. «The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts» (PDF). Journal of Catalysis. 311: 369-385. 2014. doi:10.1016/j.jcat.2013.12.008. Arquivado do original (PDF) em 15 de fevereiro de 2016 
  4. a b c d Arntz, Mathias; Fischer, Achim; Höpp; Jacobi, Sylvia; Sauer, Jörg; Ohara, Takashi; Sato, Takahisa; Shimizu, Noboru; Schwind, Helmut (2000). «Acrolein and Methacrolein». Wiley-VCH Verlag GmbH & Co. KGaA. Ullmann's Encyclopedia of Industrial Chemistry (em inglês). doi:10.1002/14356007.a01_149.pub2 
  5. Possato, Camilo I.; Cassinelli, Wellington H.; Meyer; Garetto, Teresita; Pulcinelli, Sandra H.; Santilli, Celso V.; Martins, Leandro (25 de fevereiro de 2017). «Thermal treatments of precursors of molybdenum and vanadium oxides and the formed MoxVyOz phases active in the oxydehydration of glycerol». Applied Catalysis A: General. 532: 1–11. doi:10.1016/j.apcata.2016.12.010 
  6. Possato, Teresita; Diniz, Rosiane N.; Garetto; Pulcinelli, Sandra H.; Santilli, Celso V.; Martins, Leandro (1 de abril de 2013). «A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites». Journal of Catalysis. 300: 102–112. doi:10.1016/j.jcat.2013.01.003 
  7. Martin, Hanan; Armbruster, Udo; Atia (1 de janeiro de 2012). «Recent developments in dehydration of glycerol toward acrolein over heteropolyacids». European Journal of Lipid Science and Technology (em inglês). 114 (1): 10–23. ISSN 1438-9312. doi:10.1002/ejlt.201100047 
  8. Adkins, H., Hartung, W. H. (1941). «Acrolein». Org. Synth. 
  9. E., Reuss, Laura (2003). Biological electron microscopy: theory, techniques, and troubleshooting. [S.l.]: Kluwer Academic/Plenum Publishers. ISBN 0306477491. OCLC 52239274 
  10. a b Abraham, Richard; Andres, Susanne; Palavinskas; Berg, Katharina; Appel, Klaus E.; Lampen, Alfonso (1 de setembro de 2011). «Toxicology and risk assessment of acrolein in food». Molecular Nutrition & Food Research (em inglês). 55 (9): 1277–1290. ISSN 1613-4133. doi:10.1002/mnfr.201100481 
  11. «CDC - NIOSH Pocket Guide to Chemical Hazards - Acrolein». www.cdc.gov (em inglês). Consultado em 29 de junho de 2017 
  12. Feng, Yu; Hu, Wenwei; Hu; Tang, Moon-shong (17 de outubro de 2006). «Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair». Proceedings of the National Academy of Sciences (em inglês). 103 (42): 15404–15409. ISSN 0027-8424. PMID 17030796. doi:10.1073/pnas.0607031103 
  13. Haussmann, Hans-Juergen (16 de abril de 2012). «Use of Hazard Indices for a Theoretical Evaluation of Cigarette Smoke Composition». Chemical Research in Toxicology. 25 (4): 794–810. ISSN 0893-228X. doi:10.1021/tx200536w 
  14. Daher, Ezzat; Saleh, Rawad; Jaroudi; Sheheitli, Hiba; Badr, Thérèse; Sepetdjian, Elizabeth; Al Rashidi, Mariam; Saliba, Najat; Shihadeh, Alan (1 de janeiro de 2010). «Comparison of carcinogen, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: Sidestream smoke measurements and assessment of second-hand smoke emission factors». Atmospheric Environment. 44 (1): 8–14. PMID 20161525. doi:10.1016/j.atmosenv.2009.10.004 
  15. Herrington, Jason S.; Myers, Colton (30 de outubro de 2015). «Electronic cigarette solutions and resultant aerosol profiles». Journal of Chromatography A. 1418: 192–199. doi:10.1016/j.chroma.2015.09.034 
  16. Sopori, Mohan. «Science and society: Effects of cigarette smoke on the immune system». Nature Reviews Immunology. 2 (5): 372–377. doi:10.1038/nri803 
  17. Blair, Sergey A.; Epstein, Scott A.; Nizkorodov; Staimer, Norbert (2015). «A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes». Aerosol science and technology: the journal of the American Association for Aerosol Research. 49 (9): 816–827. ISSN 0278-6826. PMID 26726281. doi:10.1080/02786826.2015.1076156 
  18. McNeill, A. S. C. (2015). «E - cigarettes: an evidence update A report commissioned by Public Health England» Verifique valor |url= (ajuda). UK: Public Health England. Consultado em 29 de junho de 2017 
  19. Sleiman, M. (2016). [pubs.acs.org «Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals.»] Verifique valor |url= (ajuda). US: American Chemistry Society. Consultado em 27 de junho de 2017 
  20. Paci, D; Rieutord, A; Guillaume; Traoré, F; Ropenga, J; Husson, H. -P; Brion, F (10 de março de 2000). «Quantitative high-performance liquid chromatographic determination of acrolein in plasma after derivatization with Luminarin® 3». Journal of Chromatography B: Biomedical Sciences and Applications. 739 (2): 239–246. doi:10.1016/s0378-4347(99)00485-5 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy