Saltar para o conteúdo

Análise funcional

Origem: Wikipédia, a enciclopédia livre.

A análise funcional é o ramo da matemática, e mais especificamente da análise, que trata do estudo de espaços de funções. Tem suas raízes históricas no estudo de transformações, tais como a Transformada de Fourier, e no estudo de equações diferenciais e equações integrais. A palavra funcional remonta ao cálculo de variações, implicando uma função cujo argumento é uma função. Seu uso em geral é atribuído a Volterra.[1][2]

Um grande impulso para o avanço da análise funcional durante o século XX foi a modelagem, devida a John von Neumann, da mecânica quântica em espaços de Hilbert.

Entre os teoremas importantes da análise funcional, estão:

Relação com outras áreas da matemática

[editar | editar código-fonte]

A análise funcional faz uso de muitos conceitos de álgebra linear, e pode ser considerada até certo ponto como o estudo de espaços normados de dimensão infinita. Durante o século XX diversas técnicas da topologia foram aplicadas no estudo da análise funcional, principalmente a teoria do grau. Um tópico da análise funcional que possui forte relação com a topologia é o estudo dos espaços vetoriais localmente convexos, onde não se admite necessariamente a existência de uma norma definindo uma topologia sobre os espaços vetoriais estudados. A partir da segunda metade do século XX, graças aos trabalhos de von Neumann, Naimark e Gelfand, a análise funcional tem sido utilizada no estudo de álgebras não-comutativas e da K-teoria algébrica.

Referências

  1. Análise Funcional
  2. César R. De Oliveira, Universidade Federal de Sao Carlos, Instituto de Matemática Pura e Aplicada (Brazil), Introdução à análise funcional; IMPA, 2001 OCLC 49254749
  • Chaim Samuel Hönig, Análise funcional e o problema de Sturm-Liouville; Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, 1971, OCLC 3860263
  • Luis Adauto Medeiros, Tópicos de análise funcional; Instituto de Matemática. Universidade Federal de Pernambuco, 1968 OCLC 3860263
  • Chaim Samuel Hönig, Análise funcional e aplicações; São Paulo, Instituto de Matemática e Estatística da Universidade de São Paulo, 1970. OCLC 10851054
  • Klaus Floret, Algumas idéias básicas da análise funcional linear; Sociedade Paranaense de Matemática, 1987 OCLC 64018339
  • Semana de Análise Funcional não Linear, Atas de Análise Funcional não Linear: Instituto de Matemática e Estatística da USP.; Sociedade Brasileira de Matemática, 1974 OCLC 707693913
  • Jaime Lesmes, Instituto de Matemática Pura e Aplicada (Brazil), Seminário de análise funcional; Instituto de Matemática Aplicada, 1976 OCLC 3263410


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy