Saltar para o conteúdo

Ciclo-oxigenase

Origem: Wikipédia, a enciclopédia livre.
COX 2, dimer, Mouse.

A prostaglandina H2 sintase, também conhecida como cicloxigenase (COX), é uma glicoproteína dimérica integral da membrana, encontrada predominantemente no retículo endoplasmático. Atua como efetor secundário na via metabólica da cascata do ácido araquidônico.

A enzima COX é responsável pela formação de prostanóides, incluindo tromboxano e prostaglandinas como a prostaciclina, a partir do ácido araquidônico. Um membro da família da heme peroxidase do tipo animal, também é conhecido como prostaglandina G/H sintase. A reação específica catalisada é a conversão de ácido araquidônico em prostaglandina H2 por meio de um intermediário de prostaglandina G2 de vida curta.[1][2]

A inibição farmacêutica da COX pode proporcionar alívio dos sintomas de inflamação e dor.[1] Os anti-inflamatórios não esteroides (AINEs), como aspirina e ibuprofeno, exercem seus efeitos por meio da inibição da COX. Aqueles que são específicos para a isoenzima COX-2 são chamados de inibidores da COX-2 ou coxibes.

Nas células dos mamíferos foram descobertas 3 isoformas: COX-1 e COX-2 e a COX-3[3]. A COX-1 é uma enzima constitutiva expressa na maioria dos tecidos, inclusive nas plaquetas do sangue. Ela desempenha funções de “manutenção” no organismo, estando envolvida em especial na homeostase dos tecidos, e é responsável, por exemplo, pela produção de prostaglandinas com funções em citoproteção gástrica, agregação plaquetária, autorregulação do fluxo sanguíneo renal e no início do parto.

Em contraposição, a COX-2 é induzida nas células inflamatórias quando ativadas, por exemplo, pelas citocinas inflamatórias – interleucina (IL)-1 e fator de necrose tumoral (TNF)-α. Deste modo, a isoforma COX-2 é a principal responsável pela produção dos mediadores prostanoides da inflamação. Contudo, existem algumas exceções significativas. A COX-2 é expressa constitutivamente no rim, gerando prostaciclina, que tem um papel na homeostase renal e no sistema nervoso central (SNC), em que a sua função ainda não está clara.[4]

Contudo, a COX-1 e a COX-2 são duas proteínas estruturalmente distintas, apresentando uma homologia de mais de 60% na sequência de aminoácidos do seu DNA complementar.

  • COX-1: constitutiva (funções fisiológicas)
  • COX-2: induzida (após certos estímulos)
  • COX-3: presente no SNC

Esta enzima é responsável pela formação de importantes mediadores biológicos chamados prostanóides (incluindo prostaglandinas, prostaciclina e tromboxano). A inibição farmacológica da COX pode causar alívio aos sintomas da inflamação e da dor.

Este é o mecanismo de ação de diversas drogas conhecidas (Anti-inflamatórios não esteróides --> AINE's) como a aspirina e o ibuprofeno.

Aspectos biológicos

[editar | editar código-fonte]

Em termos de biologia molecular, COX-1 e COX-2 têm um peso molecular semelhante, aproximadamente 70 e 72 kDa, respectivamente, possuindo 65% de homologia de sequência de aminoácidos e sítios catalíticos quase idênticos. Ambas as proteínas têm três domínios: um domínio tipo EGF N-terminal, uma pequena âncora de membrana de 4 hélices e um domínio catalítico central de heme-peroxidase. Ambos formam dímeros.[5] A âncora da membrana se fixa nas proteínas do retículo endoplasmático e na membrana do microssoma.[6]

COX é um alvo comum para drogas anti-inflamatórias. A diferença mais significativa entre as isoenzimas, que permite a inibição seletiva, é a substituição da isoleucina na posição 523 na COX-1 por valina na COX-2. O resíduo Val523 menor em COX-2 permite o acesso a um bolso lateral hidrofóbico na enzima (que Ile523 impede estericamente). Moléculas de drogas, como o DuP-697 e os coxibes dele derivados, ligam-se a esse sítio alternativo e são considerados inibidores seletivos da COX-2.[7]

Anti-inflamatórios não-esteroidais (AINEs)

[editar | editar código-fonte]

Os principais inibidores da COX são os anti-inflamatórios não esteroidais, também chamados de não seletivos ou tradicionais. Os inibidores clássicos da COX não são seletivos e inibem todos os tipos de COX. A inibição resultante da síntese de prostaglandinas e tromboxanos tem o efeito de redução da inflamação, bem como efeitos antipiréticos, antitrombóticos e analgésicos. O efeito adverso mais frequente dos AINEs é a irritação da mucosa gástrica, pois as prostaglandinas normalmente têm um papel protetor no trato gastrointestinal. Alguns AINEs também são ácidos, o que pode causar danos adicionais ao trato gastrointestinal.

Inibidores seletivos de cicloxigenase-2

[editar | editar código-fonte]

A seletividade para COX-2 é a principal característica dos coxibes. Como a COX-2 geralmente é específica para o tecido inflamado, há muito menos irritação gástrica associada aos inibidores da COX-2, com menor risco de ulceração péptica. A seletividade da COX-2 não parece anular outros efeitos colaterais dos AINEs, principalmente um risco aumentado de insuficiência renal, e há evidências que indicam um aumento no risco de ataque cardíaco, trombose e acidente vascular cerebral por meio de um aumento de tromboxano desequilibrado pela prostaciclina (que é reduzida pela inibição da COX-2).[8]

Inibição natural da enzima COX

[editar | editar código-fonte]

Cogumelos culinários, como maitake, podem ser capazes de inibir parcialmente COX-1 e COX-2.[9][10]

Descobriu-se que uma variedade de flavonóides inibe a COX-2.[11]

Os óleos de peixe fornecem ácidos graxos alternativos ao ácido araquidônico. Esses ácidos podem ser transformados em algumas prostaciclinas anti-inflamatórias pela COX em vez de prostaglandinas pró-inflamatórias.[12]

A hiperforina demonstrou inibir a COX-1 cerca de 3 a 18 vezes mais do que a aspirina.[13]

O calcitriol (vitamina D) inibe significativamente a expressão do gene COX-2.[14]

Deve-se ter cautela ao combinar aspirina em baixas doses com inibidores da COX-2 devido ao potencial aumento de danos à mucosa gástrica. A COX-2 é regulada positivamente quando a COX-1 é suprimida com aspirina, o que se acredita ser importante para aumentar os mecanismos de defesa da mucosa e diminuir a erosão pela aspirina.[15]

Efeitos adversos cardiovasculares dos inibidores da COX

[editar | editar código-fonte]

Descobriu-se que os inibidores da COX-2 aumentam o risco de aterotrombose, mesmo com uso a curto prazo. Uma análise de 2006 de 138 estudos randomizados e quase 150.000 participantes[8] mostrou que os inibidores seletivos de COX-2 estão associados a um risco moderadamente aumentado de eventos vasculares, principalmente devido a um risco duas vezes maior de infarto do miocárdio, e também que regimes de altas doses de alguns AINEs tradicionais (como diclofenac e ibuprofeno, mas não naproxeno) estão associados a um aumento semelhante no risco de eventos vasculares.

Óleos de peixe (por exemplo, óleo de fígado de bacalhau) têm sido propostos como uma alternativa razoável para o tratamento da artrite reumatoide e outras condições como consequência do fato de que eles fornecem menos risco cardiovascular do que outros tratamentos, incluindo AINEs.[12]

Ícone de esboço Este artigo sobre enzimas é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  1. a b Litalien, Catherine; Beaulieu, Pierre (2006). «Molecular Aspects of Drug Actions: From Receptors to Effectors». Elsevier: 1659–1677. Consultado em 4 de setembro de 2022 
  2. Liu, Jiayan; Seibold, Steve A.; Rieke, Caroline J.; Song, Inseok; Cukier, Robert I.; Smith, William L. (junho de 2007). «Prostaglandin Endoperoxide H Synthases». Journal of Biological Chemistry (25): 18233–18244. ISSN 0021-9258. doi:10.1074/jbc.m701235200. Consultado em 4 de setembro de 2022 
  3. «Cyclooxygenase 3 - an overview | ScienceDirect Topics». www.sciencedirect.com. Consultado em 4 de setembro de 2022 
  4. «Rang and Dale's Pharmacology 7Th Edition Preface». Elsevier. 2012: xv. Consultado em 4 de setembro de 2022 
  5. Nina, Mafalda; Bernèche, Simon; Roux, Benoît (22 de setembro de 2000). «Anchoring of a monotopic membrane protein: the binding of prostaglandin H2 synthase-1 to the surface of a phospholipid bilayer». European Biophysics Journal (6): 439–454. ISSN 0175-7571. doi:10.1007/pl00006649. Consultado em 4 de setembro de 2022 
  6. «Enzymes in UniProt». doi:10.6019/tol.unip-enzymes-w.2017.00001.1. Consultado em 4 de setembro de 2022 
  7. Kurumbail, Ravi G.; Stevens, Anna M.; Gierse, James K.; McDonald, Joseph J.; Stegeman, Roderick A.; Pak, Jina Y.; Gildehaus, Daniel; iyashiro, Julie M.; Penning, Thomas D. (26 de dezembro de 1996). «Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents». Nature (6610): 644–648. ISSN 0028-0836. doi:10.1038/384644a0. Consultado em 4 de setembro de 2022 
  8. a b Kearney, Patricia M; Baigent, Colin; Godwin, Jon; Halls, Heather; Emberson, Jonathan R; Patrono, Carlo (1 de junho de 2006). «Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials». BMJ (7553): 1302–1308. ISSN 0959-8138. doi:10.1136/bmj.332.7553.1302. Consultado em 4 de setembro de 2022 
  9. Zhang, Yanjun; Mills, Gary L.; Nair, Muraleedharan G. (18 de dezembro de 2002). «Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa». Journal of Agricultural and Food Chemistry (26): 7581–7585. ISSN 0021-8561. PMID 12475274. doi:10.1021/jf0257648. Consultado em 4 de setembro de 2022 
  10. Zhang, Y.; Mills, G. L.; Nair, M. G. (1 de janeiro de 2003). «Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita». Phytomedicine (em inglês) (5): 386–390. ISSN 0944-7113. doi:10.1078/0944-7113-00272. Consultado em 4 de setembro de 2022 
  11. O'Leary, Karen A.; de Pascual-Teresa, Sonia; de Pascual-Tereasa, Sonia; Needs, Paul W.; Bao, Yong-Ping; O'Brien, Nora M.; Williamson, Gary (13 de julho de 2004). «Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription». Mutation Research (1-2): 245–254. ISSN 0027-5107. PMID 15225597. doi:10.1016/j.mrfmmm.2004.01.015. Consultado em 4 de setembro de 2022 
  12. a b Cleland, Leslie G.; James, Michael J.; Proudman, Susanna M. (2006). «Fish oil: what the prescriber needs to know». Arthritis Research & Therapy (1). 202 páginas. ISSN 1478-6362. PMC 1526555Acessível livremente. PMID 16542466. doi:10.1186/ar1876. Consultado em 4 de setembro de 2022 
  13. Albert, Dana; Zündorf, Ilse; Dingermann, Theo; Müller, Walter E.; Steinhilber, Dieter; Werz, Oliver (15 de dezembro de 2002). «Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase». Biochemical Pharmacology (12): 1767–1775. ISSN 0006-2952. PMID 12445866. doi:10.1016/s0006-2952(02)01387-4. Consultado em 4 de setembro de 2022 
  14. Moreno, Jacqueline; Krishnan, Aruna V.; Peehl, Donna M.; Feldman, David (julho de 2006). «Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells: inhibition of the prostaglandin pathway». Anticancer Research (4A): 2525–2530. ISSN 0250-7005. PMID 16886660. Consultado em 4 de setembro de 2022 
  15. Wallace, John L. (outubro de 2008). «Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself?». Physiological Reviews (4): 1547–1565. ISSN 0031-9333. PMID 18923189. doi:10.1152/physrev.00004.2008. Consultado em 4 de setembro de 2022 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy