Saltar para o conteúdo

Método de Jeffreys

Origem: Wikipédia, a enciclopédia livre.

Em estatística, o método de Jeffreys, regra de Jeffreys ou a priori de Jeffreys, nomeado em homenagem a Sir Harold Jeffreys é uma probabilidade a priori não informativa para um espaço de parâmetros definida como:[1]

,

onde:

Isto é, a priori de Jeffreys é proporcional () a raiz quadrada do determinante da matriz de informação de Fisher.

Esta regra possui a propriedade da invariância a transformações 1 a 1 do vetor paramétrico .[2] Ou seja, se for feita uma transformação inversível da forma , tanto calculando-se a priori para e depois fazendo-se a transformação quanto aplicando-se a regra de Jeffreys, obtém-se a mesma priori para .[1][2]

Referências

  1. a b Ehlers, Ricardo S. (2002). Inferência Estatística (PDF). [S.l.: s.n.] 
  2. a b Gomes, Carlos Henrique A. (2006). Estimação Bayesiana com priori de Jeffreys em Modelos Espaço de Estados (PDF). [S.l.: s.n.] 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy