Saltar para o conteúdo

Modelagem computacional

Origem: Wikipédia, a enciclopédia livre.
Captura de tela de uma experiência computacional tridimensional animada com uma criação de modelo sobre isolamento de base.[1]

Modelagem computacional é uma área de conhecimento multidisciplinar que trata da aplicação de modelos matemáticos e técnicas da computação à análise, compreensão e estudo da fenomenologia de problemas complexos em áreas tão abrangentes quanto as engenharias, ciências exatas, biológicas, humanas, economia e ciências ambientais.

A modelagem computacional é a área que trata da simulação de soluções para problemas científicos, analisando os fenômenos, desenvolvendo modelos matemáticos para sua descrição, e elaborando códigos computacionais para obtenção daquelas soluções. É área em expansão, de ampla aplicação, em:

Algumas áreas de atividade econômica que auferem benefícios da modelagem computacional são:

A sofisticação dos problemas com que a humanidade tem se deparado nas últimas décadas, em áreas tão diversas como as megaestruturas e a mecânica do contínuo, a nanotecnologia, a genômica e a bioinformática, a computação quântica, a ecologia, e a astrofísica, em novos materiais e em desenvolvimento sustentado, a título de exemplo, nos apresenta exigência de respostas exponencialmente mais complexas com relação àquelas que precisamos gerar no passado, apresentando para a ciência e para a comunidade científica um desafio: a necessidade de obtenção de resposta cada vez mais sofisticadas, objetivando tratar aquela complexidade, em tempo sucessivamente menor e por meio de solução de problemas complexos.

Problemas complexos

[editar | editar código-fonte]

Problemas complexos, ou de grande grau de complexidade, resultam em inflação da quantidade de variáveis físicas a manipular e controlar no processo de estabelecimento do problema, estabelecimento de hipóteses para o modelo, proposição de teorias, postulados e teoremas, guias para a busca de solução do problema, controle, aferimento e aproximação da solução. Usualmente problemas complexos demandam forte esforço de cálculo, a partir do estabelecimento de modelos matemáticos robustos ou do estabelecimento de teias de relações entre variáveis em diversas escalas de observação, desde a nano, passando pela micro, até o macro. O eixo de estabelecimento do modelo de solução de problemas complexos tem sido a observação do problema, de sua fenomenologia e a concepção do modelo físico e do modelo fenomenológico que antecede o desenvolvimento do modelo matemático, desenvolvimento do sistema de equações que regem o problema, e sua solução computacional mediante um código apropriado. O estabelecimento desta concepção de tratamento e abordagem de problemas complexos em ciência, bem como de sua solução a partir deste modelo, considerando uma diversidade de modelos qualitativos, e sobretudo modelos quantitativos, em abordagem numérica usualmente computacional, busca assim superar a incerteza na trajetória de evolução do problema sob análise, e sobre as variáveis do problema.

Modelos matemáticos estabelecidos a partir de modelos fenomenológico, recaem em sistemas de equações diferenciais parciais ou de equações diferenciais ordinárias de elevado número de incógnitas, demandando forte esforço computacional na sua solução. A aproximação das soluções dessas equações por procedimentos numéricos tornou-se necessária à medida que as ciências ambientais, engenharias, tecnológicas e as ciências biológicas e da saúde avançavam no sentido da satisfação das necessidades humanas.

Abordagem de soluções

[editar | editar código-fonte]

A abordagem computacional é a adotada na modelagem computacional. Trata-se de área Interdisciplinar para o estabelecimento de modelos, com adoção de formulações matemáticas na solução de problemas científicos em estreita aliança e integração com as linhas de pesquisa que definem as áreas de conhecimento associadas aos problemas complexos. Os resultados projetados oferecem uma metodologia para a determinação, no tempo e no espaço do impacto de intervenções humanas, como por exemplo no desmatamento de mata nativa e implantação de indústrias, com base no conhecimento do fluxo das substâncias ou materiais envolvidos nas emissões industriais e no transporte destas no ambiente, das taxas de acumulação nas áreas de influência e projeção dos efeitos sobre as populações afetadas.

Tal abordagem compõe a área de modelagem computacional, na interface com as engenharias, a matemática computacional, a física computacional, e com a computação científica, pertinente á abordagem de soluções para problemas complexos, pertinente à mecânica do contínuo. Na modelagem computacional, os problemas tratam de elevado número de variáveis, propondo-se a adoção de métodos numéricos de tratamento do problema, associado à ferramenta computacional, e às técnicas de programação avançadas, adequadas à otimização da busca das soluções dos problemas complexos. Tal procedimento é adequado tanto a meios contínuos, homogêneos como heterogêneos, bem como a sistemas discretos, determinísticos e probabilísticos, incorrendo em menor custo computacional.

Abrangência e interfaces

[editar | editar código-fonte]

A área que aqui conceituamos, é também denominada como simulação computacional científica e mecânica computacional. Trata-se de área que engloba o conjunto de conhecimentos relacionados aos métodos numéricos que envolvem os procedimentos de análise e solução de problemas complexos relacionados à Mecânica do Contínuo, às Ciências Exatas e às Ciências Naturais e Ciências do Meio Ambiente, a Fenômenos Biológicos, e à mecânica orgânica. Diz respeito ao estudo de áreas diversas, particularmente a mecânica dos sólidos e a mecânica dos fluidos, a biofísica e biomecânica, a Sistemas Ecológicos e Populacionais. Seu campo de aplicação, e escalas de observação, abrange as escalas espacial e do tempo, transientes e estacionários. A modelagem computacional, destina-se à solução de problemas complexos regidos por equações diferenciais ordinárias e equações diferenciais parciais, e a problemas de valores iniciais e de problemas de valores de contorno.

Origem e aplicações

[editar | editar código-fonte]

Reunindo um grupo de conhecimentos originados na mecânica clássica e na engenharia mecânica, passou a superá-las, e tem sido utilizado no meio acadêmico e técnico, denominando o conjunto de conhecimentos fortemente associados ao emprego de computadores na solução de problemas científicos e particularmente métodos numéricos, tais como:

  1. nas engenharias, em ciências tecnológicas, e nas ciências exatas: abrangendo a mecânica do contínuo, mecânica dos sólidos, mecânica dos fluidos, mecânica das estruturas, nanotecnologia e nanofísica, mecânica dos solos e fundações, mecânica da fratura, teoria da elasticidade, teoria das estruturas e resistência dos materiais, aspectos de teoria de projetos e projeto auxiliado por computador, engenharia assistida por computador, plasticidade e viscoelasticidade, escoamento de fluidos, escoamento e mecânica dos meios porosos, otimização e programação linear, métodos variacionais e métodos numéricos, algoritmos genéticos, computação paralela e computação distribuída, visualização científica, modelagem molecular, teoria do caos, e a álgebra em suas diversas teorias, dentre outras aplicações.
  2. em Ciências Ambientais: em ecologia computacional, em modelagem de ecossistemas e biomas, na simulação e modelagem de trocas de massa e energia entre populações, destas para o meio ambiente, e entre ecossistemas, no desenvolvimento de métodos numéricos de solução de sistemas de EDOs e EDPs, estudos de impacto de desmatamento de mata nativa, das alterações ambientais decorrentes, simulação e projeção temporal. Modelos de implantação de indústrias, e simulação de impacto ambiental determinada pela implantação de sistemas de produção. Simulação, análise, modelagem e projeção temporal e espacial do fluxo das substâncias ou materiais envolvidos nas emissões industriais e no transporte destas no ambiente, das taxas de acumulação nas áreas de influência e projeção dos efeitos sobre as populações afetadas.
  3. em ciências biológicas e da saúde: abrangendo a genômica e a proteômica computacionais, simulação de ação de proteínas e de sequências de códigos genético, visualização espacial de sequências genéticas, modelagem espacial de proteínas, modelagem estrutural de vírus e bactérias, análise de movimentos de seres microscópicos, modelagem hemodinâmica, de sistemas orgânicos, da ação farmacológica e da simulação virtual de drogas terapêuticas ou curativas. Modelos computacionais odontológicos, protéticos e de implantes. Modelagem de sistemas orgânicos biofísicos, biomecânicos e celulares.

Deve ser observado, também, que não se trata de área da ciência da computação, ainda que com esta inter-relacionada, e sim da possibilidade de aplicação de conceitos e ideias abrangendo as etapas de análise e compreensão do fenômeno sob estudo, estabelecimento de sistema de equações adequado a simulação do fenômeno em questão, desenvolvimento de softwares adequados à solução do problema científico abordado, e aplicação a estudo teórico ou prático, compreendendo análise crítica dos resultados e calibração do modelo desenvolvido.

Métodos e técnicas

[editar | editar código-fonte]

Alguns dos métodos estudados na modelagem computacional com direcionamento à solução de problemas típicos das engenharias, das ciências exatas, biológicas e ambientais, são: Métodos dos Elementos Finitos, Métodos dos Elementos de Contorno, Método dos Volumes Finitos, Métodos das Diferenças Finitas, Método Integral e Variacional, Métodos Autoadaptativos, computação distribuída, Redes e Grids Computacionais, computação vetorial e paralela Aplicada, Pré e Pós-processamento gráfico e otimização, sistemas de orientação espacial, Modelagem do Espaço Humano, Simulação Computacional, realidade virtual e protótipos computacionais.

A modelagem computacional utiliza um conjunto de métodos, ferramentas e formulações direcionadas à solução de problemas complexos, envolvendo grande número de variáveis, volumosa massa de dados, processamento e manipulação de imagens. Desenvolvimento de modelos matemáticos e de métodos numéricos, bem como discretização e tratamento de meios contínuos estão no seu campo de abrangência.

A modelagem científica computacional aplica, então, a computação a outras áreas do conhecimento. Ela permite que se criem modelos computacionais para situações em que é impossível ou muito caro testar ou medir as diversas soluções possíveis para um fenômeno a partir de modelos experimentais ou por solução analítica. Viabiliza a adoção de abordagem computacional, avançando além das limitações, completando e integrando-se a estas outras abordagens e muitas vezes sendo a única opção, à abordagem experimental e à analítica.

Por modelagem científica concebe-se não só a modelagem relacionada ao desenvolvimento de métodos numéricos e variacionais, como também à compreensão e desenvolvimento de modelos associados à fenomenologia física dos problemas complexos, aplicação de modelos já desenvolvidos, simulação, previsão e projeções temporais e espaciais do desenvolvimento de soluções para aqueles problemas.

Limitações em ciência cognitiva[2]

[editar | editar código-fonte]

Podem surgir problemas quando se simula processos cognitivos, por causa das limitações do computador. Foi sugerido por Palmer e Kimchi que se pode especificar uma teoria sucessivamente com mais detalhe até chegar ao ponto de ser possível escrever um programa de computador e que deve ser possível também de separar a partir de que ponto é que a implementação é dependente da linguagem de programação e máquina, em vez de ser depender do cérebro. É que o programa vai ter sempre aspetos que não estão relacionados com a teoria psicológica, mas que a tecnologia disponível impõe ao pesquisador. Um exemplo são as funcionalidades que são incluídas no programa para saber qual é o seu estado interno a determinada altura enquanto corre, e que, obviamente, não estão relacionadas com o funcionamento do cérebro.

O desempenho também pode ser problemático, porque também é limitado com a tecnologia disponível, sendo impossível comparar diretamente as velocidades de respostas de ambos máquina e cérebro, embora possa haver uma relação de proporcionalidade entre os dois, ou no mínimo o produto de ambos deve estar bastante próximo.

  1. Earthquake Performance Evaluation Tool Online
  2. Eysenck, Michael W.: "Cognitive Psychology: A Student's Handbook", páginas 15 e 16. Psychology Press, 1990 ISBN 0-86377-154-8.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy