Saltar para o conteúdo

Regra de três composta

Origem: Wikipédia, a enciclopédia livre.

A regra de três composta, na matemática, é uma forma de se descobrir valores de grandezas a partir de outros valores já existentes. Um modelo reduzido deste método é a regra de três simples, utilizada quando a comparação se dá apenas entre três valores. A regra de três composta é utilizada quando se quer descobrir um único valor a partir de três, cinco ou mais valores já conhecidos, e tendo em conta que os valores referentes a uma mesma classe de objeto têm de estar na mesma unidade de medida.[1]

Exemplos práticos

[editar | editar código-fonte]

Na análise de como iremos resolver um problema por meio da regra de três composta, deve-se levar em conta se as grandezas relacionadas são diretamente ou inversamente proporcionais. Vejamos a seguir como na prática estas duas situações se comportam.

Exemplo 1

Temos o seguinte enunciado: "O dono de uma carpintaria sabe que precisa de 50 operários para fazer 10 estantes em 5 dias, mas sabendo ele que para fazer as estantes tem apenas dois dias, de quantos operários vai precisar?". Para resolver este problema adotaremos a seguinte lógica:

a) Vamos elaborar um esquema onde "x" é a incógnita.

Estantes Operários Dias
10 50 5
10 x 2

b) Se diminuirmos ( ↓ ) o número de operários, fazem-se mais ( ↑ ) ou menos ( ↓ ) estantes? Caso tenha respondido que fazem-se menos ( ↓ ), você acertou! Agora vamos assinalar no quadro.

Estantes Operários
10 50
10 x

c) Se diminuirmos ( ↓ ) o número de operários, precisa-se de mais ( ↑ ) ou menos ( ↓ ) dias? Claro que é mais ( ↑ ). Vamos assinalar no quadro.

Operários Dias
50 5
x 2

d) O quadro final e completo fica assim.

Estantes Operários Dias
10 50 5
10 x 2

e) Vamos criar e resolver a equação.

Atenção que o número de dias foi invertido porque se trata de uma grandeza inversamente proporcional.

Fazendo as contas:

A carpintaria precisará de 125 operários.

Exemplo 2

Em 8 horas, 20 caminhões descarregam 160 m³ de areia. em 5 horas, quantos caminhões serão necessários para descarregar 125 m³?

Horas Caminhões Areia em m³
8 20 160
5 x 125

Sempre onde estiver x a seta é para baixo, ou seja, diretamente proporcional. Ela pode estar em qualquer posição ou lugar. Sempre a seta é para baixo. Ficará assim:

  • a) Quanto menos caminhões houver, então, mais horas necessárias; portanto, Inversamente Proporcional (↑);
  • b) Quanto menos caminhões houver, então, menos o volume descarregado; portanto, Diretamente Proporcional (↓).
Horas Caminhões Volume
8 20 160
5 x 125

Fazendo os cálculos:

X = 25 caminhões

Transformando regra de três composta em regra de três simples

[editar | editar código-fonte]

Uma maneira fácil, sem precisar decorar regras, de resolver uma regra de três composta é transformá-la em regra de três simples, tomando o cuidado de usar o que for diretamente proporcional.

Por exemplo
  • A quantidade de dias é inversamente proporcional à quantidade de operários;
  • A quantidade de estantes é diretamente proporcional à quantidade de operários.
Então, não se deve armar a regra de três simples com a quantidade de dias;
Deve-se armar a regra de três simples com a quantidade de estantes fabricadas por dia.

Exemplo:

O dono de uma carpintaria sabe que precisa de 40 operários para fazer 10 estantes em 5 dias. Quantas estantes ele fabricará em oito dias, sabendo ele que só poderá usar 30 empregados?

Solução:

Os 40 operários produzem estantes por dia.

Os 30 operários farão estantes por dia.

Armando a regra de três simples:

Referências

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy