Saltar para o conteúdo

Soma de Riemann

Origem: Wikipédia, a enciclopédia livre.
Quatro dos métodos do somatório de Riemann para aproximação da área sob curvas. Métodos à direita e à esquerda fazem a aproximação usando os pontos finais à direita e à esquerda de cada subintervalo, respectivamente. Métodos máximo e mínimo fazem a aproximação usando o maior e menor valores de pontos finais de cada subintervalo, respectivamente. Os valores das somas convergem como os subintervalos da metade superior à esquerda a baixo à direita.

Na matemática, a soma de Riemann é uma aproximação obtida pela expressão .

É nomeada em homenagem ao matemático alemão Bernhard Riemann. Uma aplicação muito comum é a aproximação da área de funções ou linhas em um gráfico, mas também o comprimento das curvas e outras aproximações.

A soma é dada pela divisão da região a ser calculada em formas (retângulos, trapézios, parábolas ou cubos) que juntos formam uma região que é similar àquela a ser medida, então calcula-se a área de cada uma das formas, e finalmente soma-se todas essas áreas menores juntas.  Essa abordagem pode ser usada para encontrar uma aproximação numérica para a integral definida mesmo se o teorema fundamental do cálculo não ajudar a encontrar uma forma fechada.

Tendo em vista que a região preenchida pelas formas menores geralmente não corresponde a exata forma da região a ser medida, a Soma de Riemann será diferente desta. Esse erro pode ser reduzido se a região for mais dividida, usando formas cada vez menores. Ao passo que as formas ficam menores, a soma se aproxima a Integral de Riemann.

Normalmente a Soma de Riemann tem uma aplicação ótima para funções polinomiais ou algébricas, o que significa que é possível precisar o valor exato do limite da soma com facilidade. Porém, para funções ditas transcendentes o cálculo da integral definida é não trivial por Riemann, ocorrendo ele comumente pela formação de retângulos de forma análoga ao método da exaustão.

Considere f:D → R sendo uma função definida do subconjunto D, de números reais, R. Tome I = [ab] como um intervalo fechado contido em D, e

sendo uma partição de I, onde

Uma soma de Riemann de f sobre I com a partição P é definida como

Atenção no uso de “uma” ao invés de “a” em referência a soma de Riemann. Isso ocorre pelo fato que a escolha de  no intervalo  é arbitrária, dado o fato que qualquer função f definida em um intervalo I e na partição fixada P, pode produzir uma soma de Riemann diferente em decorrência de qual  foi escolhido, desde que  se mantenha verdadeiro.

Exemplo: Escolhas específicas de  nos dão diferentes tipos de soma de Riemann:

  • Se  para todo i, então S é chamado de Soma de Riemann à Esquerda;
  • Se  para todo i, então  S é chamado de Soma de Riemann à Direita;
  • Se  para todo i, então é S é chamado de Soma de Riemann Média.
  • A média entre a Soma à Esquerda e a Soma à Direita é chamada de Soma Trapezoidal.
  • Se é dado que   onde  é o supremo de f sobre , então S é definido como uma Soma de Riemann Superior;
  • De forma semelhante, se  é o ínfimo de f sobre , então S é definido como uma Soma de Riemann Inferior.

Qualquer soma de Riemann em dada partição (isto é, qualquer soma obtida pela escolha de  entre e  ) está entre as somas de Riemann superior e a inferior. Uma função é definida como integrável por Riemann se a soma inferior e superior forem se aproximando conforme a partição se afina. Este fato pode ser também usado para a integração numérica.

Soma de Riemann à Esquerda[1]
Soma de Riemann à Direita

Os quatro métodos de Riemann para a soma são geralmente melhor usados com partições de tamanhos equivalentes. O intervalo [a, b] é, portanto, dividido em n subintervalos, de comprimento

  Os pontos na partição serão então

Soma de Riemann à Esquerda

[editar | editar código-fonte]

Para a Soma de Riemann à Esquerda, aproxima-se a função pelo seu valor no ponto final à esquerda, dando múltiplos retângulos com base Δx e altura f(a+iΔx). Tomando para i = 0, 1, ... n-1, e adicionando as áreas resultantes temos

 A soma de Riemann à esquerda resulta em uma superestimação se f está monotonicamente decrescendo nesse intervalo, e em uma subestimação se f está monotonicamente crescendo.

Soma de Riemann à Direita

[editar | editar código-fonte]

Nessa soma, aproxima-se f de seu valor no ponto final à direita. São gerados, então, múltiplos retângulos de base Δx e altura f(a+Δx). Tomando para i – 1 , ..., n e adicionando as áreas resultantes se produz

 

Soma de Riemann Média

A soma de Riemann à direita resulta em uma subestimação se f está monotonicamente decrescendo, e uma superestimação se f está

monotonicamente crescendo. O erro na fórmula será

 onde  é o valor máximo do valor absoluto de  nesse intervalo.

Soma de Riemann Regra Trapezoidal

Aproximando f no ponto médio dos intervalos expressam f(a+Δx/2) para o primeiro intervalo, para o próximo temos f(a+3Δx/2), e assim por diante até f(b-Δx/2). Somando as áreas temos

 

O erro dessa formula será

onde  é o valor máximo do valor absoluto de  nesse intervalo.

Regra Trapezoidal

[editar | editar código-fonte]

Nesse caso, os valores da função f no intervalo são aproximados pela média dos valores nos pontos finais da direita e da esquerda. Dessa mesma maneira, um simples cálculo usando a formula da área

 para um trapézio de lados paralelos b1, b2 e altura h produz

O erro dessa fórmula será

 onde  é o valor máximo do valor absoluto de

 A aproximação obtida com a regra do trapézio para a função é o mesmo que a média da somas esquerdas e direitas dessa função.

O valor da Soma de Riemann sob a curva y=x² de 0 à 2. Conforme o número de retangulos aumenta, aproxima-se da área exata de 8/3[2]

Tomado um exemplo, a área sob a curva de y=x2 entre 0 e 2 pode ser processualmente computada usando o método de Riemann.

O intervalo [0,2] é primeiramente dividido em n subintervalos, cada um deles com comprimento de  ; esse é o comprimento dos retângulos de Riemann (a seguir chamadas “caixas”). Já que será usada a soma de Riemann à direita, a sequência de coordenadas x para as caixas será . Dessa forma, a sequência de alturas das caixas será . É um fato importante que  e .

A área de cada caixa será  e sendo assim a soma de Riemann à direita será: 

Se o limite é visualizado como  n → ∞, pode-se concluir que a aproximação alcança o valor real da área  sob a curva ao passo que o número de caixas aumenta.

Consequentemente:

.

Esse método concorda com a integral definida tal qual calculada nos modos mais mecânicos:

Soma de Riemann à Esquerda
Soma de Riemann à Direita
Soma de Riemann Média
Soma de Riemann para y=x²

Integral de Riemann

Integral de Riemann-Stieltjes

Integral de Lebesgue

Fórmula de Simpson

Primitiva

  • Thomas, George B. Jr.; Finney, Ross L. (1996), Calculus and Analytic Geometry (9th ed.), Addison Wesley, ISBN 0-201-53174-7
  1. «Faça exemplos com O Monitor». omonitor.io. Consultado em 25 de março de 2016 
  2. «Confira este exemplo e faça outros com O Monitor». omonitor.io. Consultado em 19 de março de 2016 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy