Sari la conținut

Hiperboloid

De la Wikipedia, enciclopedia liberă
Nu confundați cu Paraboloid hiperbolic.

Hiperboloid
cu o pânză

Suprafață conică

Hiperboloid
cu două pânze

În matematică, printr-un hiperboloid se înțelege o cuadrică, un anumit fel de suprafață tridimensională, descrisă de ecuația:

(Hiperboloid cu o pânză),

respectiv

(Hiperboloid cu două pânze).

Ambele aceste suprafețe sunt asimptotice la aceeași suprafață conică, pe măsură ce x ori y cresc,

Astfel de suprafețe se numesc hiperboloizi eliptici. Dacă și numai dacă a = b, atunci un hiperboloid eliptic devine un hiperboloid de revoluție.

Coordonate carteziene

[modificare | modificare sursă]
Animație prezentând un hiperboloid de revoluție

Coordonatele carteziene pentru hiperboloizi pot fi definite similar coordonatelor sferice, menținând azimutul unghiului , dar schimbând elevația v în funcțiile hiperbolice.

Hiperboloidul cu o suprafață, devine:

Iar hiperboloidul a două suprafețe, devine:

Ecuații generalizate

[modificare | modificare sursă]

Generalizat, un hiperboloid arbitrar, centrat în v, este definit de ecuația:

în care A este o matrice, iar x și v sunt vectori euclidieni.

Structuri hiperboloidale

[modificare | modificare sursă]
Shukhov Hyperboloid tower (1898) în Vyksa

Legături externe

[modificare | modificare sursă]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy