Остеобласт

Остеобла́сты (от др.-греч. ὀστέον — «кость» + др.-греч. βλάστη — «росток, отпрыск, побег») — молодые клетки костной ткани (диаметром 15-20 мкм), которые синтезируют межклеточное вещество — матрикс. По мере накопления межклеточного вещества остеобласты замуровываются в нём и становятся остеоцитами. Остеобласты богаты элементами зернистой эндоплазматической сети, рибосомами, имеют хорошо развитый комплекс Гольджи. Их многочисленные отростки контактируют между собой и с отростками остеоцитов. Вспомогательной функцией остеобластов является участие в процессе отложения солей кальция в межклеточном веществе (кальцификации матрикса) благодаря высокому содержанию щелочной фосфатазы, что свидетельствует о высокой синтетической активности остеобластов. При этом происходит образование полостей (лакун), в которых они и залегают, превращаясь в остеоциты.

Остеобласты возникают из мезенхимальных стволовых клеток[1]. По форме остеобласты делятся на три группы: кубические, пирамидальные и угловатые (многоугольные).

В сформировавшейся кости остеобласты встречаются только в местах разрушения и восстановления костной ткани, тогда как в развивающейся кости они непрерывным слоем покрывают почти всю поверхность формирующейся костной балки. Остеобласты располагаются вокруг первичных костных перекладин, образованных коллагеновыми волокнами. Оказавшись между ними, многие остеобласты замуровываются в межклеточном веществе и становятся остеоцитами. Так возникает костная ткань.

Остеобласты также в большом количестве находятся в надкостнице и в эндосте.

Остеобласты отделяют кость от внеклеточной жидкости. Фосфат и кальций из костной ткани не могут в нее перемещаться пассивной диффузией, потому что плотные остеобластные соединения изолируют внутреннее пространство кости. Кальций транспортируется через остеобласты пассивным транспортом (то есть транспортерами, которые не нагнетают кальций против градиента). Напротив, фосфат активно перемещается сочетанием секреции фосфатсодержащих соединений, включая АТФ расщепления фосфата фосфатазами на фронте минерализации. Щелочная фосфатаза — это мембранный белок, который является характерным маркером остеобластов, он находится в больших количествах на апикальной (секреторной) поверхности активных остеобластов.

В замкнутой системе при минерализации накапливается фосфорная кислота, быстро понижая рН и останавливая дальнейшее выпадение осадка. Хрящ не препятствует диффузии, поэтому кислота рассеивается, что позволяет осадку выпадать. В остеоне, где матрикс отделен от внеклеточной жидкости плотными соединениями, этого не происходит. В контролируемом закрытом отсеке удаление H+ приводит к выпадению осадка в широком диапазоне внеклеточных условий, если кальций и фосфат доступны в отсеке матрикса[2]. Остеобласты обладают способностью к обмену Na+ / H+ через обменники Na/H, NHE1 и NHE6[3]. Этот обмен Н+ является основным способом удаления кислоты, хотя механизм, с помощью которого Н+ переносится из матричного пространства в барьерный остеобласт, неизвестен.

Остеобласты также соединены щелевыми контактами, что позволяет клеткам в одной когорте функционировать совместно. Это было продемонстрировано путем введения флуоресцентных красителей с низким молекулярным весом в остеобласты; показано, что краситель диффундирует в окружающие и более глубокие клетки в костных блоках[4]. Десмосомы также соединяют более глубокие слои клеток с поверхностным слоем. Кость состоит из многих таких блоков, которые разделены непроницаемыми зонами без клеточных соединений, называемых цементными линиями.

Примечания

править
  1. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas. Multilineage potential of adult human mesenchymal stem cells // Science (New York, N.Y.). — 1999-04-02. — Т. 284, вып. 5411. — С. 143–147. — ISSN 0036-8075. Архивировано 13 сентября 2017 года.
  2. S. Schartum, G. Nichols. Concerning pH gradients between the extracellular compartment and fluids bathing the bone mineral surface and their relation to calcium ion distribution // The Journal of Clinical Investigation. — May 1962. — Т. 41. — С. 1163–1168. — ISSN 0021-9738. — doi:10.1172/JCI104569. Архивировано 4 ноября 2017 года.
  3. Li Liu, Paul H. Schlesinger, Nicole M. Slack, Peter A. Friedman, Harry C. Blair. High capacity Na+/H+ exchange activity in mineralizing osteoblasts // Journal of Cellular Physiology. — June 2011. — Т. 226, вып. 6. — С. 1702–1712. — ISSN 1097-4652. — doi:10.1002/jcp.22501. Архивировано 25 января 2018 года.
  4. C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs, H. J. Donahue. Functional gap junctions between osteocytic and osteoblastic cells // Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research. — February 2000. — Т. 15, вып. 2. — С. 209–217. — ISSN 0884-0431. — doi:10.1359/jbmr.2000.15.2.209. Архивировано 4 ноября 2017 года.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy