Pojdi na vsebino

Prisekani kubooktaeder

Iz Wikipedije, proste enciklopedije
Prisekani kubooktaeder

(animacija)
vrsta arhimedsko telo
uniformni polieder
elementi F = 26, E = 72,
V = 4 8 (χ = 2)
stranske ploskve na stran 12{4} + 8{6} + 6{8}
Conwayjev zapis bC ali taC
Schläflijevi simboli tr{4,3} ali
t0,1,2{4,3}
Wythoffov simbol 2 3 4 |
Coxeter-Dinkinov diagram
simetrija Oh, B3, [4,3], (*432), red 48
vrtilna grupa O, [4,3]+, (432), red 24
diedrski kot 4-6: arccos(-√6/3 = 144º 44′ 08″
4-8: arccos(-√2/3) = 135º
6-8: arccos(-√3/3) = 125º 15′ 51″
sklici U11, C23, W15
značilnosti konveksen
polpravilen
zonoeder

obarvane stranske ploskve

4.6.8
(slika oglišč)
disdiakisni dodekaeder
(dualni polieder)

mreža telesa

Prisekani kubooktaeder je v geometriji konveksni polieder. Je arhimedsko telo, eno od trinajstih konveksnih izogonalnih neprizmatičnih teles skonstruirano z dvema ali več vrstami pravilnih mnogokotniških stranskih ploskev.

Ima šestindvajset pravilnih stranskih ploskev, od tega dvanajst kvadratnih, osem šestkotniških in šest osemkotniških, ter 72 robov in 48 oglišč. Ker ima vsaka stranska ploskev točkovno simetrijo, kar je enakovredno vrtilni simetriji, je to telo tudi zonoeder.

Druga imena

[uredi | uredi kodo]

Izmenoma se uporabljajo tudi drugačna imena za prisekani kubooktaeder:

  • rombiprisekani kubooktaeder [1]
  • veliki rombikubooktaeder [2]
  • veliki rombkubooktaeder [3]

Ime prisekani kubooktaeder je dal telesu nemški astrolog, astronom in matematik Johannes Kepler (1571–1630). To ime je malo zavajoče. Če se priseka kubooktaeder tako, da se odstrani oglišča, se ne dobi takšnega uniformnega telesa. Nekatere stranske ploskve bi bile pravokotniki. Rezultirajoče telo je topološko enakovredno prisekanemu kubooktaedru, ki se ga vedno lahko spremeni, dokler so stranske ploskve pravilne.

Drugo ime "veliki rombikubooktaeder" se nanaša na dejstvo, da 12 kvadratnih stranskih ploskev leži v istih ravninah kot stranske ploskve rombskega dodekaedra, 6 osemkotnih v istih ravninah kot stranske ploskve kocke, 8 šestkotnih pa v istih ravninah kot stranske ploskve oktaedra.

Ameriški matematik Norman Johson (*1930) je telo imenoval omniprisekana kocka ali kantiprisekana kocka.

Kartezične koordinate

[uredi | uredi kodo]

Kartezične koordinate oglišč prisekanega kubooktaedra, ki ima dolžino roba 2 in leži v izhodišču, so vse permutacije vrednosti:

(±1, ±(1+√2), ±(1+2√2)).

Površina in prostornina

[uredi | uredi kodo]

Površina P in prostornina V prisekanega oktaedra z dolžino roba a sta:

Oglišča

[uredi | uredi kodo]

Da se poišče število oglišč, je pomembno to, da je vsako oglišče stičišče kvadrata, šestkotnika in osemkotnika.

Dualno telo

[uredi | uredi kodo]

Uniformna barvanja

[uredi | uredi kodo]

Obstaja samo ena oblika uniformnega barvanja stranskih ploskev tega poliedra. To vključuje po eno barvo za vsako stransko ploskev.

2-uniformno barvanje tudi obstaja z izmenoma obarvanimi šestkotniki.

Pravokotne projekcije

[uredi | uredi kodo]

Prisekani kubooktaeder ima dva posebni pravokotni projekciji v Coxeterjevih ravninah A2 in B2 s projektivno simetrijo [6] in [8]. Številne simetrije se lahko konstruira iz različnih projektivnih ravnin v odvisnosti od elementov poliedrov.

Pravokotne projekcije
usrediščeno na oglišče rob
4-6
rob
4-8
rob
6-8
pravokotnico na
stransko ploskev
4-6
slika
projektivna
simetrija
[2]+ [2] [2] [2] [2]
disdiakisni
dodekaeder
 
usrediščeno na pravokotnico na
stransko ploskev –
kvadrat
pravokotnico na
stransko ploskev –
osemkotnik
stransko ploskev –
kvadrat
stransko ploskev –
šestkotnik
stransko ploskev –
osemkotnik
slika
projektivna
simetrija
[2] [2] [2] [6] [8]
disdiakisni
dodekaeder
   

Sorodni poliedri in tlakovanja

[uredi | uredi kodo]

Vsak prisekani kubooktaeder je eden izmed članov družine uniformnih poliedrov, ki so sorodni kocki in pravilnemu oktaedru.

Družina uniformnih oktaederskih poliedrov
{4,3} t0,1{4,3} t1{4,3} t0,1{3,4} {3,4} t0,2{4,3} t0,1,2{4,3} {4,3} h0{4,3} h1,2{4,3}

Ta polieder se lahko obravnava kot zaporedje uniformnih vzorcev, ki imajo sliko oglišč (4.6.2p) ter Coxeter-Dinkinov diagram . Za p < 6 so člani zaporedja omniprisekani poliedri (zonoedri), ki so prikazani spodaj kot sferno tlakovanje. Za p > 6 so to tlakovanja hiperbolične ravnine, ki se prične s trisedemkotnim tlakovanjem.

simetrija sferna ravninska hiperbolična
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]
 
*∞32
[∞,3]
 
red 12 24 48 120
omniprisekana
oblika

4.6.4

4.6.6

4.6.8

4.6.10

4.6.12

4.6.14

4.6.16

4.6.∞
Coxeter
Schläfli

t0,1,2{2,3}

t0,1,2{3,3}

t0,1,2{4,3}

t0,1,2{5,3}

t0,1,2{6,3}

t0,1,2{7,3}

t0,1,2{8,3}

t0,1,2{∞,3}
omniprisekani
duali

V4.6.4

V4.6.6

V4.6.8

V4.6.10

V4.6.12

V4.6.14
V4.6.16 V4.6.∞
Coxeter

Glej tudi

[uredi | uredi kodo]

Sklici

[uredi | uredi kodo]
  1. Wenninger, Magnus (1974), Polyhedron Models, Cambridge University Press, ISBN 978-0-521-09859-5, MR0467493 (Model 15, p. 29)
  2. Cromwell, P.; Polyhedra, CUP hbk (1997), pbk. (1999). (p. 82)
  3. http://books.google.si/books?id=OJowej1QWpoC&lpg=PP1&pg=PA82&redir_esc=y#v=onepage&q&f=false (poglavje 3-9, s. 82)

Zunanje povezave

[uredi | uredi kodo]


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy