Перейти до вмісту

Стала Планка

Матеріал з Вікіпедії — вільної енциклопедії.
Значення h Одиниці
6.626×10−34 Дж·с
4.135×10−15 еВ·с
6.626×10−27 ерг·с
Значення ħ Одиниці
1.054×10−34 Дж·с
6.582×10−16 еВ·с
1.054×10−27 ерг·с
Стала Планка
Зображення
Названо на честь Макс Планк
Першовідкривач або винахідник Макс Планк
Дата відкриття (винаходу) 1901
Розмірність
Числове значення 0 джоуль-секунда[1][2]
Формула
Позначення у формулі і
Символ величини (LaTeX)
Омогліф h[d][3]
Фізична величина дія
Блок Юнікоду Letterlike Symbolsd
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика
HTML-мнемоніка [4], [5], [5] і [5]
Назва символу Юнікоду PLANCK CONSTANT[6]
Позиція в Юнікоді 210E
CMNS: Стала Планка у Вікісховищі
Пам'ятний знак Максові Планку на честь відкриття ним сталої Планка, на фасаді Гумбольдтівського університету, Берлін. Напис гласить: «В цій будівлі викладав Макс Планк, який винайшов елементарний квант дії h, з 1889 до 1928».

Стала Планка — елементарний квант дії, фундаментальна фізична величина, яка відображає квантову природу Всесвіту. Загальний момент імпульсу фізичної системи може змінюватися тільки кратно величині сталої Планка. Як наслідок, у квантовій механіці фізичні величини виражаються через сталу Планка.

Стала Планка позначається латинською літерою h. Вона має розмірність енергії, помноженої на час.

Частіше використовується зведена стала Планка

.

Крім того, що вона зручніша для використання в формулах квантової механіки, вона має особливе позначення, яке ні з чим не сплутаєш.

Числове значення

[ред. | ред. код]

Фундаментальна фізична стала Планка позначається літерою і в Міжнародній системі одиниць SI її визначено в резолюції Генеральної конференції мір і ваг[7]:

h = 6.62607015×10−34 Дж⋅с = кг⋅м2⋅с−1.

Фізична суть

[ред. | ред. код]

Історично стала Планка була запроваджена як коефіцієнт пропорційності між енергією кванта та частотою електромагнітної хвилі:

,

де  — енергія,  — лінійна, а  — циклічна частота. Це співвідношення справедливе для будь-якого тіла в квантовій механіці — будь-яка квантова система описується хвилею, частота якої визначається енергією системи.

Аналогічно, імпульс пропорційний хвильовому вектору із тим же коефіцієнтом пропорційності:

,

де  — імпульс,  — його модуль,  — хвильовий вектор,  — довжина хвилі.

Оператор імпульсу в квантовій механіці визначається як , і через нього стала Планка входить в оператор енергії — гамільтоніан.

Стала Планка має розмірність дії, тобто ту ж розмірність, що й момент імпульсу, тому вона є природною одиницею вимірювання моменту імпульсу в квантовій механіці. Завдяки квантуванню проєкція орбітального моменту на вибрану вісь може приймати тільки цілі значення сталих Планка, а проєкція спіну — цілі або напівцілі.

Принцип невизначеності

[ред. | ред. код]

Стала Планка фігурує в формулюванні принципу невизначеності Гейзенберга, яким квантова механіка суттєво відрізняється від класичної. Добуток невизначеності координати та імпульсу частинки повинен принаймні перевищувати половину зведеної сталої Планка:

.

Якщо в класичній фізиці для характеристики частинки потрібно знати її положення та швидкість, то для характеристики частинки в квантовій механіці потрібно знати її хвильову функцію. Хвильова функція містить повну інформацію про частинку, але неможливо побудувати її так, щоб вона одночасно точно визначала положення і швидкість частинки.

Мірило квантовості

[ред. | ред. код]

Порівняння характерної для даної фізичної системи величини з розмірністю дії часто виступає мірилом квантовості системи і визначає те, чи можна застосовувати класичний підхід. Наприклад, якщо момент кількості руху тіла набагато перевищує значення , то його обертання не потребує квантового розгляду. При виведенні квазікласичного наближення застосовується теорія збурень із розкладом по .

Вимірювання

[ред. | ред. код]

Перші вимірювання значення сталої Планка проводилися на основі аналізу спектру абсолютно чорного тіла та експериментів з фотоефекту. Однак, оскільки стала Планка є фундаментальною константою, то її значення впливає на багато інших фізичних величин, а тому вона потребує визначення із якомога найбільшою точністю.

До 2019 року Комітет з даних для науки і техніки рекомендував використовувати значення, отримане усередненням виміряних за допомогою кількох різних методик:

Метод Значення h
(10−34 Дж·с)
Відносна
похибка
Посилання
Ватові терези 6.62606889(23) 3.4× 10−8 [8][9][10]
Розсіяння рентгенівських променів 6.6260745(19) 2.9× 10−7 [11]
Стала Джозефсона 6.6260678(27) 4.1× 10−7 [12][13]
Магнітний резонанс 6.6260724(57) 8.6× 10−7 [14][15]
Стала Фарадея 6.6260657(88) 1.3× 10−6 [16]
CODATA 2010
Рекомендоване значення
6.62606957(29) 4.4× 10−8 [17]
9 сучасних вимірювань сталої Планка проводилися 5-ма різними методами. Там, де один метод застосовувався кілька разів, наведене значення h є усередненням, проведеним CODATA.

У 2019 році кілограм був визначений через сталу Планка, відповідно, її значення тепер зафіксоване, і становить 6,62607015×10−34 кг·м²/с. Подальше збільшення точності вимірювання буде впливати на значення маси самого кілограму, а не на його співвідношення зі сталою Планка. Виміри для еталону кілограма базуються на найточнішому на 2019 рік способі вимірювання: ватові терези (або ваги Кіббла).[18].

Історія

[ред. | ред. код]

Макс Планк ввів свою сталу для пояснення спектру випромінювання абсолютно чорного тіла, припустивши, що тіло випромінює електромагнітні хвилі порціями (квантами) з енергією, пропорційною частоті (). У 1905 році Ейнштейн використав це припущення для того, щоб пояснити явище фотоефекту, постулювавши, що електромагнітні хвилі поглинаються порціями з енергією пропорційною частоті. Так зародилася квантова механіка, в справедливості якої обидва лауреати Нобелівської премії сумнівалися все життя.

Посилання

[ред. | ред. код]

Виноски

[ред. | ред. код]
  1. https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf
  2. SI A concise summary of the International System of Units, SI — 2019.
  3. Unicode 13.0Консорціум Юнікоду, 2020.
  4. https://html.spec.whatwg.org/multipage/named-characters.html
  5. а б в https://html.spec.whatwg.org/multipage/syntax.html#character-references
  6. https://www.unicode.org/Public/UCD/latest/ucd/NamesList.txt
  7. Weule, Genelle (16 листопада 2018). If you thought a kilogram weighed a kilogram, you were wrong (and the definition is about to change). ABC News (en-AU) . Процитовано 16 листопада 2018.
  8. Kibble, B P; Robinson, I A; Belliss, J H (1990), A Realization of the SI Watt by the NPL Moving-coil Balance, Metrologia, 27 (4): 173—92, Bibcode:1990Metro..27..173K, doi:10.1088/0026-1394/27/4/002
  9. Steiner, R.; Newell, D.; Williams, E. (2005), Details of the 1998 Watt Balance Experiment Determining the Planck Constant (PDF), Journal of Research, National Institute of Standards and Technology, 110 (1): 1—26, архів оригіналу (PDF) за 18 жовтня 2011, процитовано 6 червня 2013 [Архівовано 2011-10-18 у Wayback Machine.]
  10. Steiner, Richard L.; Williams, Edwin R.; Liu, Ruimin; Newell, David B. (2007), Uncertainty Improvements of the NIST Electronic Kilogram, IEEE Transactions on Instrumentation and Measurement, 56 (2): 592—96, doi:10.1109/TIM.2007.890590
  11. Fujii, K.; Waseda, A.; Kuramoto, N.; Mizushima, S.; Becker, P.; Bettin, H.; Nicolaus, A.; Kuetgens, U.; Valkiers, S. (2005), Present state of the avogadro constant determination from silicon crystals with natural isotopic compositions, IEEE Transactions on Instrumentation and Measurement, 54 (2): 854—59, doi:10.1109/TIM.2004.843101
  12. Sienknecht, Volkmar; Funck, Torsten (1985), Determination of the SI Volt at the PTB, IEEE Trans. Instrum. Meas., 34 (2): 195—98, doi:10.1109/TIM.1985.4315300. Sienknecht, V; Funck, T (1986), Realization of the SI Unit Volt by Means of a Voltage Balance, Metrologia(інші мови), 22 (3): 209—12, Bibcode:1986Metro..22..209S, doi:10.1088/0026-1394/22/3/018. Funck, T.; Sienknecht, V. (1991), Determination of the volt with the improved PTB voltage balance, IEEE Transactions on Instrumentation and Measurement, 40 (2): 158—61, doi:10.1109/TIM.1990.1032905
  13. Clothier, W. K.; Sloggett, G. J.; Bairnsfather, H.; Currey, M. F.; Benjamin, D. J. (1989), A Determination of the Volt, Metrologia, 26 (1): 9—46, Bibcode:1989Metro..26....9C, doi:10.1088/0026-1394/26/1/003
  14. Kibble, B P; Hunt, G J (1979), A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field, Metrologia, 15 (1): 5—30, Bibcode:1979Metro..15....5K, doi:10.1088/0026-1394/15/1/002
  15. Liu Ruimin; Liu Hengji; Jin Tiruo; Lu Zhirong;Du Xianhe; Xue Shouqing; Kong Jingwen; Yu Baijiang;Zhou Xianan; Liu Tiebin; Zhang Wei (1995), A Recent Determination for the SI Values of γ′p and 2e/h at NIM, Acta Metrologica Sinica, 16 (3): 161—68, архів оригіналу за 8 лютого 2021, процитовано 29 січня 2021 [Архівовано 2021-02-08 у Wayback Machine.]
  16. Bower, V. E.; Davis, R. S. (1980), The Electrochemical Equivalent of Pure Silver: A Value of the Faraday Constant, Journal of Research, National Bureau Standards, 85 (3): 175—91
  17. CODATA Recommended Values of the Fundamental Physical Constants: 2010(англ.)
  18. New definition of the kilogram comes into force(англ.)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy