Open In App

Numpy MaskedArray.astype() function | Python

Last Updated : 16 Jun, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.
numpy.MaskedArray.astype() function returns a copy of the MaskedArray cast to given newtype.
 

Syntax : numpy.MaskedArray.astype(newtype)
Parameters: 
newtype : Type in which we want to convert the masked array.
Return : [MaskedArray] A copy of self cast to input newtype. The returned record shape matches self.shape.


Code #1 : 
 

Python3
# Python program explaining
# numpy.MaskedArray.astype() method 

# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma

# creating input array 
in_arr = geek.array([1, 2, 3, -1, 5])
print ("Input array : ", in_arr)

# Now we are creating a masked array of int32 
# and making third entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[0, 0, 1, 0, 0])
print ("Masked array : ", mask_arr)

# printing the data type of masked array
print(mask_arr.dtype) 

# applying MaskedArray.astype methods to mask array
# and converting it to float64
out_arr = mask_arr.astype('float64')
print ("Output typecasted array : ", out_arr)

# printing the data type of typecasted masked array
print(out_arr.dtype) 

Output: 
Input array :  [ 1  2  3 -1  5]
Masked array :  [1 2 -- -1 5]
int32
Output typecasted array :  [1.0 2.0 -- -1.0 5.0]
float64

 

 
Code #2 : 
 

Python3
# Python program explaining
# numpy.MaskedArray.astype() method 

# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma

# creating input array 
in_arr = geek.array([10.1, 20.2, 30.3, 40.4, 50.5], dtype ='float64')
print ("Input array : ", in_arr)

# Now we are creating a masked array by making 
# first and third entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[1, 0, 1, 0, 0])
print ("Masked array : ", mask_arr)

# printing the data type of masked array
print(mask_arr.dtype) 

# applying MaskedArray.astype methods to mask array
# and converting it to int32
out_arr = mask_arr.astype('int32')
print ("Output typecasted array : ", out_arr)

# printing the data type of typecasted masked array
print(out_arr.dtype) 

Output: 
Input array :  [10.1 20.2 30.3 40.4 50.5]
Masked array :  [-- 20.2 -- 40.4 50.5]
float64
Output typecasted array :  [-- 20 -- 40 50]
int32

 

Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy