计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 212-220.doi: 10.11896/jsjkx.210300019
李浩东1, 胡洁1, 范勤勤1,2
LI Hao-dong1, HU Jie1, FAN Qin-qin1,2
摘要: 基于分区搜索的多模态多目标优化属于一种决策空间分解策略,因此它具有天然的并行性。为提高求解效率,提出了一种并行分区搜索(Parallel Zoning Search,PZS)方法来辅助多模态多目标进化算法。在PZS中,首先将多模态多目标优化问题的整个决策空间划分为多个子空间,然后利用并行计算技术来实现选定的多模态多目标进化算法在各个子区域内进行并行搜索,最后将所有子空间得到的解集进行合并和选择。为验证所提方法的有效性,文中设计了两组实验:1)在所有对比算法的运行时间相同的条件下进行实验;2)在所有对比算法的函数评价次数相同的条件下进行实验。结果表明,在计算时间相同的情况下,所提方法能够有效提高选定的多模态多目标进化算法在决策空间中所得解集的质量;而在相同函数评价次数条件下,其能够节省计算时间。文中还将与PZS相结合的多模态多目标进化算法用于求解考虑碳排放的海铁联运能耗多模态多目标优化问题,所得结果可以为海铁联运中的环境保护和运输时间问题提供决策支持。
中图分类号:
[1]LIANG J,YUE C T,QU B Y.Multimodal multi-objective optimization:A preliminary study[C]//2016 IEEE Congress on Evolutionary Computation (CEC).2016:2454-2461. [2]LI X,EPITROPAKIS M G,DEB K.Seeking Multiple Solutions:An Updated Survey on Niching Methods and Their Applications[J].IEEE Transactions on Evolutionary Computation,2017,21(4):518-538. [3]DEB K,TIWARI S.Omni-optimizer:A Procedure for Single and Multi-objective Optimization[C]//Evolutionary Multi-Criterion Optimization,Third International Conference.Guanajuato,Mexico:DBLP,2005:47-61. [4]YUE C T,QU B Y,LIANG J.A Multi-objective Particle SwarmOptimizer Using Ring Topology for Solving Multimodal Multi-objective Problems[J].IEEE Transactions on Evolutionary Computation,2018,22(5):805-817. [5]TANABE R,ISHIBUCHI H.A Framework to Handle Multimodal Multi-objective Optimization in Decomposition-Based Evolutionary Algorithms[J].IEEE Transactions on Evolutio-nary Computation,2020,24(4):720-734. [6]LIU Y P,YEN G,GONG D.A Multi-Modal Multi-Objective Evolutionary Algorithm Using Two-Archive and Recombination Strategies[J].IEEE Transactions on Evolutionary Computation,2018,23(4):660-674. [7]QU B Y,LI C,LIANG J.A self-organized speciation basedmulti-objective particle swarm optimizer for multimodal multi-objective problems[J].Applied Soft Computing,2020,86(1):86-97. [8]LIU Y P,SHIBUCHI H,YEN G.Handling Imbalance Between Convergence and Diversity in the Decision Space in Evolutionary Multimodal Multi-objective Optimization[J].IEEE Transactions on Evolutionary Computation,2020,24(3):551-565. [9]LI Z X,LI Y,CHU Y J.Decomposition Multi-objective Optimization Algorithm Based on Improved Balancing Strategy[J].Computer Engineering,2019,45(3):155-161. [10]FAN Q Q,YAN X F.Solving Multimodal Multi-objective Problems Through Zoning Search[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(8):4836-4847. [11]WANG Z J,ZHAN Z H,KWONG S.Adaptive GranularityLearning Distributed Particle Swarm Optimization for Large-Scale Optimization[J].IEEE Transactions on Cybernetics,2021,51(3):1175-1188. [12]GUO Y,LI J Y,ZHAN Z H.Efficient Hyperparameter Optimization for Convolution Neural Networks in Deep Learning:A Distributed Particle Swarm Optimization Approach[J].Cybernetics and Systems,2020(2):1-22. [13]ZHAN Z H,WANG Z J,JIN H,et al.Adaptive Distributed Differential Evolution[J].IEEE Transactions on Cybernetics,2020,50(11):4633-4647. [14]LI J Y,ZHAN Z H,LIU R D,et al.Generation-Level Paralle-lism for Evolutionary Computation:A Pipeline-Based Parallel Particle Swarm Optimization[J].IEEE Transactions on Cybernetics,2020,51(10):1-12. [15]DEB K.Multi-objective genetic algorithms:problem difficulties and construction of test problems[J].Evolutionary Computation,1999,7(3):205-230. [16]ZHANG Q,ZHOU A,JIN Y.RM-MEDA:A Regularity Model-Based Multi-objective Estimation of Distribution Algorithm[J].IEEE Transactions on Evolutionary Computation,2008,12(1):41-63. [17]LIANG J,GUO Q,YUE C T,et al.A Self-organizing Multi-objective Particle Swarm Optimization Algorithm for Multimodal Multi-objective Problems[M].Cham:Springer,2018:550-560. [18]ZHOU A M,ZHANG Q F,JIN Y.Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm[J].IEEE Transactions on Evolutionary Computation,2009,13(5):1167-1189. [19]FANG A,CUI L,ZHANG Z,et al.A Parallel ComputingFramework for Cloud Services[C]//2020 IEEE International Conference on Advances in Electrical Engineering and Compu-ter Applications (AEECA).2020:832-835. [20]GAN Y Z.Research Status and Development Trend of Parallel Computing Integration[J].Electronic Technology and Software Engineering,2019,8(7):134. [21]GUO Y D,ZHU X Y,GUO W,et al.A parallel algorithm for road network kernel density estimation based on Spark computing framework[J].Geomatics and Information Science of Wuhan University,2020,45(2):289-295. [22]WANG Z Y,YANG X J.Review of metrics for parallel computing systems[J].Computer Engineering & Science,2010,32(10):44-48. [23]DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [24]RUDOLPH G,NAUJOKS B,PREUSS M,et al.Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets[C]//Evolutionary Multi-Criterion Optimization.Berlin:Springer,2007:36-50. [25]WILCOXON F.Individual Comparisons by Ranking Methods.Biom Bull[J].Biometrics,1944,1(6):80-83. [26]BI C C,F Q Q,WANG W L.Multi-objective Differential Evolution Algorithm Based on Strategy Adaptive and Its Application[J].Application Research of Computers,2018,37(7):29-34. [27]WANG S,MENG Q.Sailing speed optimization for containerships in a liner shipping network[J].Transportation Research Part E:Logistics and Transportation Review,2012,48(3):701-714. [28]FAN Q Q,JIN Y C,WANG W L.A performance-driven multi-algorithm selection strategy for energy consumption optimization of sea-rail intermodal transportation[J].Swarm and Evolutionary Computation,2019,44:1-17. [29]TIAN Y J,HE W J,PENG C S,et al.Cost and Environmental Benefits of Switching to Low Sulphur oil for Ships in the Pearl River Estuary bay Area[J].Research of Environmental Sciences,2018,31(7):1322-1328. |
[1] | 陈国良, 张玉杰. 并行计算学科发展历程 Development of Parallel Computing Subject 计算机科学, 2020, 47(8): 1-4. https://doi.org/10.11896/jsjkx.200600027 |
[2] | 汪洋, 李鹏, 季一木, 樊卫北, 张玉杰, 王汝传, 陈国良. 高性能计算与天文大数据研究综述 High Performance Computing and Astronomical Data:A Survey 计算机科学, 2020, 47(1): 1-6. https://doi.org/10.11896/jsjkx.190900042 |
[3] | 颜辉, 朱伯靖, 万文, 钟英, DavidAYune. 基于超算暨HPIC-LBM的大时空尺度三维湍流磁重联 HPIC-LBM Method Based Simulation of Large Temporal-Spatial Scale 3D Turbulent Magnetic Reconnection on Supercomputer 计算机科学, 2019, 46(8): 89-94. https://doi.org/10.11896/j.issn.1002-137X.2019.08.014 |
[4] | 贾迅, 钱磊, 邬贵明, 吴东, 谢向辉. FPGA应用于高性能计算的研究现状和未来挑战 Research Advances and Future Challenges of FPGA-based High Performance Computing 计算机科学, 2019, 46(11): 11-19. https://doi.org/10.11896/jsjkx.191100500C |
[5] | 张云泉. 2018年中国高性能计算机发展现状分析与展望 State-of-the-art Analysis and Perspectives of 2018 China HPC Development 计算机科学, 2019, 46(1): 1-5. https://doi.org/10.11896/j.issn.1002-137X.2019.01.001 |
[6] | 司雨濛,韦建文,Simon SEE,林新华. 星系分组算法的并行设计与优化:SGI系统与分布式集群对比 Parallel Design and Optimization of Galaxy Group Finding Algorithm on Comparation of SGI and Distributed-memory Cluster 计算机科学, 2017, 44(10): 80-84. https://doi.org/10.11896/j.issn.1002-137X.2017.10.015 |
[7] | 徐琪,程耀东,陈刚. 高能物理环境中混合存储系统的设计与优化 Design and Optimization of Hybrid Storage System in HEP Environment 计算机科学, 2017, 44(10): 75-79. https://doi.org/10.11896/j.issn.1002-137X.2017.10.014 |
[8] | 黄秋兰,李海波,石京燕,孙震宇,伍文静,程耀东,程振京. 基于Openstack的高能物理虚拟计算集群系统及应用 Openstack-based Virtualized Computing Cluster and Application for High Energy Physics 计算机科学, 2017, 44(10): 59-63. https://doi.org/10.11896/j.issn.1002-137X.2017.10.011 |
[9] | 钱迎进,李永刚,汪毅,周琳琦. Lustre文件系统元数据服务恢复机制的改进 Improvement of Recovery Mechanism for Lustre Metadata Service 计算机科学, 2015, 42(9): 177-182. https://doi.org/10.11896/j.issn.1002-137X.2015.09.034 |
[10] | 王一超,秦强,施忠伟,林新华. 在Intel Knights Corner和NVIDIA Kepler架构上OpenACC的性能可移植性分析 Performance Portability Evaluation for OpenACC on Intel Knights Corner and NVIDIA Kepler 计算机科学, 2015, 42(1): 75-78. https://doi.org/10.11896/j.issn.1002-137X.2015.01.017 |
[11] | 黄秋兰,李莎,程耀东,陈刚. 高能物理计算环境中KVM虚拟机的性能优化与应用 Performance Optimization and Application of KVM in HEP Computing Environment 计算机科学, 2015, 42(1): 67-70. https://doi.org/10.11896/j.issn.1002-137X.2015.01.015 |
[12] | 程耀东,汪璐,黄秋兰,陈刚. 高能物理计算环境中存储系统的设计与优化 Design and Optimization of Storage System in HEP Computing Environment 计算机科学, 2015, 42(1): 54-58. https://doi.org/10.11896/j.issn.1002-137X.2015.01.012 |
[13] | 李智佳,胡翔,焦莉,王伟锋. 基于随机Petri网的高性能计算系统作业调度及InfiniBand网络互连的性能分析 Performance Evaluation of Job Scheduling and InfiniBand Network Interconnection in High Performance Computing System Based on Stochastic Petri Nets 计算机科学, 2015, 42(1): 33-37. https://doi.org/10.11896/j.issn.1002-137X.2015.01.007 |
[14] | 李静梅,王雪,吴艳霞. 一种改进的优先级列表任务调度算法 Improved Priority List Task Scheduling Algorithm 计算机科学, 2014, 41(5): 20-23. https://doi.org/10.11896/j.issn.1002-137X.2014.05.004 |
[15] | 王文义,王春霞,王杰. 基于CMP多核集群的混合并行编程技术研究 Research on Hybrid Parallel Programming Technique Based on CMP Multi-cure Cluster 计算机科学, 2014, 41(2): 19-22. |
|