Computer Science ›› 2021, Vol. 48 ›› Issue (4): 316-324.doi: 10.11896/jsjkx.200300128
• Information Security • Previous Articles Next Articles
WU Xiao-li, HU Wei
CLC Number:
[1]MÄÄTTÄ J,HADID A,PIETIKÄINEN M.Face spoofing detection from single images using micro-texture analysis[C]//2011 International Joint Conference on Biometrics(IJCB).2011:1-7. [2]DE FREITAS PEREIRA T,ANJOS A,DE MARTINO J M,et al.LBP-TOP Based Countermeasure against Face Spoofing Attacks[C]//Computer Vision - ACCV 2012 Workshops.Berlin,Heidelberg:Springer,2013:121-132. [3]DE FREITAS PEREIRA T,ANJOS A,DE MARTINO J M,et al.Can face anti-spoofing countermeasures work in a real world scenario?[C]//2013 International Conference on Biometrics(ICB).2013:1-8. [4]KOMULAINEN J,HADID A,PIETIKÄINEN M.Contextbased face anti-spoofing[C]//2013 IEEE Sixth International Conference on Biometrics:Theory,Applications and Systems(BTAS).2013:1-8. [5]YANG J W,LEI Z,LIAO S H,et al.Face liveness detectionwith component dependent descriptor[C]//2013 International Conference on Biometrics(ICB).2013:1-6. [6]PATEL K,HAN H,JAIN A K.Secure Face Unlock:Spoof Detection on Smartphones[J].IEEE Transactions on Information Forensics and Security,2016,11(10):2268-2283. [7]BOULKENAFET Z,KOMULAINEN J,HADID A.Face An-tispoofing Using Speeded-Up Robust Features and Fisher Vector Encoding[J].IEEE Signal Processing Letters,2017,24(2):141-145. [8]BOULKENAFET Z,KOMULAINEN J,HADID A.Face Spoofing Detection Using Colour Texture Analysis[J].IEEE Transactions on Information Forensics and Security,2016,11(8):1818-1830. [9]BOULKENAFET Z,KOMULAINEN J,HADID A.Face anti-spoofing based on color texture analysis[C]//2015 IEEE International Conference on Image Processing(ICIP).2015:2636-2640. [10]LI J W,WANG Y H,TAN T N,et al.Live face detection based on the analysis of Fourier spectra[C]//Biometric Technology for Human Identification.Proceedings of SPIE - The International Society for Optical Engineering,2004,5404:296-303. [11]PAN G,SUN L,WU Z H,et al.Eyeblink-based Anti-Spoofing in Face Recognition from a Generic Webcamera[C]//2007 IEEE 11th International Conference on Computer Vision.2007:1-8. [12]SUN L,PAN G,WU Z H,et al.Blinking-Based Live Face Detection Using Conditional Random Fields[C]//Advances in Biometrics.Berlin,Heidelberg:Springer,2007:252-260. [13]KOLLREIDER K,FRONTHALER H,FARAJ M I,et al.Real-Time Face Detection and Motion Analysis With Application in “Liveness” Assessment[J].IEEE Transactions on Information Forensics and Security,2007,2(3):548-558. [14]YANG J,LEI Z,LI S Z.Learn Convolutional Neural Network for Face Anti-Spoofing[J/OL].CoRR,2014,http://arxiv.org/abs/1408.5601. [15]PATEL K,HAN H,JAIN A K.Cross-Database Face An-tispoofing with Robust Feature Representation[C]//Biometric Recognition.Cham:Springer International Publishing,2016:611-619. [16]LI L,FENG X Y,BOULKENAFET Z,et al.An original face anti-spoofing approach using partial convolutional neural network[C]//2016 Sixth International Conference on Image Processing Theory,Tools and Applications(IPTA).2016:1-6. [17]FENG L T,PO L M,LI Y M,et al.Integration of image quality and motion cues for face anti-spoofing:A neural network approach[J].Journal of Visual Communication and Image Representation,2016,38:451-460. [18]ATOUM Y,LIU Y J,JOURABLOO A,et al.Face anti-spoofing using patch and depth-based CNNs[C]//2017 IEEE International Joint Conference on Biometrics(IJCB).2017:319-328. [19]JOURABLOO A,LIU Y J,LIU X M.Face De-spoofing:Anti-spoofing via Noise Modeling[C]//Computer Vision - ECCV 2018.Cham:Springer International Publishing,2018:297-315. [20]LIU Y J,STEHOUWER J,JOURABLOO A,et al.Deep Tree Learning for Zero-Shot Face Anti-Spoofing[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:4675-4684. [21]XU Z Q,LI S,DENG W D.Learning temporal features using LSTM-CNN architecture for face anti-spoofing[C]//2015 3rd IAPR Asian Conference on Pattern Recognition(ACPR).2015:141-145. [22]YANG X,LUO W H,BAO L C,et al.Face Anti-Spoofing:Mo-del Matters,so Does Data[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:3502-3511. [23]LIU Y J,JOURABLOO A,LIU X M.Learning Deep Models for Face Anti-Spoofing:Binary or Auxiliary Supervision[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:389-398. [24]ZHANG S F,WANG X B,LIU A J,et al.A Dataset and Benchmark for Large-Scale Multi-Modal Face Anti-Spoofing[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:919-928. [25]ZHANG X Y,ZHOU X Y,LIN M X,et al.ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile Devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [26]LIU J J,HOU Q B,CHENG M M,et al.A Simple Pooling-Based Design for Real-Time Salient Object Detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:3912-3921. [27]ZHANG Z W,YAN J J,LIU S F,et al.A face anti-spoofing database with diverse attacks[C]//2012 5th IAPR International Conference on Biometrics(ICB).2012:26-31. [28]CHINGOVSKA I,ANJOS A,MARCEL S.On the effectiveness of local binary patterns in face anti-spoofing[C]//2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group(BIOSIG).2012:1-7. [29]FENG Y,WU F,SHAO X H,et al.Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network[C]//Computer Vision - ECCV 2018.Cham:Springer International Publishing,2018:557-574. [30]WU X,HE R,SUN Z N,et al.A Light CNN for Deep Face Representation With Noisy Labels[J].IEEE Transactions on Information Forensics and Security,2018,13(11):2884-2896. [31]WANG Z Z,ZHAO C X,QIN Y X,et al.Exploiting temporal and depth information for multi-frame face anti-spoofing[J/OL].CoRR,2018,http://arxiv.org/abs/1811.05118. [32]SIDDIQUI T A,BHARADWAJ S,DHAMECHA T I,et al.Face anti-spoofing with multifeature videolet aggregation[C]//2016 23rd International Conference on Pattern Recognition(ICPR).2016:1035-1040. [33]AGARWAL A,SINGH R,VATSA M.Face anti-spoofing using Haralick features[C]//2016 IEEE 8th International Conference on Biometrics Theory,Applications and Systems(BTAS).2016:1-6. [34]PATEL K,HAN H,JAIN A K,et al.Live face video vs.spoof face video:Use of moiré patterns to detect replay video attacks[C]//2015 International Conference on Biometrics(ICB).2015:98-105. [35]ARASHLOO S R,KITTLER J,CHRISTMAS W.An Anomaly Detection Approach to Face Spoofing Detection:A New Formulation and Evaluation Protocol[J].IEEE Access,2017,5:13868-13882. [36]BOULKENAFET Z,KOMULAINEN J,LI L,et al.OULU-NPU:A Mobile Face Presentation Attack Database with Real-World Variations[C]//2017 12th IEEE International Confe-rence on Automatic Face & Gesture Recognition(FG 2017).2017:612-618. [37]XIONG F,ABDALMAGEED W.Unknown Presentation Attack Detection with Face RGB Images[C]//2018 IEEE 9th International Conference on Biometrics Theory,Applications and Systems(BTAS).2018:1-9. [38]ISO/IEC JTC 1/SC 37.Information technology-Biometric pre-sentation attack detection:ISO/IEC 30107-1[S].Online Browsing Platform,2016. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[3] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[4] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[5] | XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[8] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[9] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[10] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[11] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[12] | JIN Fang-yan, WANG Xiu-li. Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM [J]. Computer Science, 2022, 49(7): 179-186. |
[13] | XIONG Luo-geng, ZHENG Shang, ZOU Hai-tao, YU Hua-long, GAO Shang. Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism [J]. Computer Science, 2022, 49(7): 212-219. |
[14] | PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247. |
[15] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
|