Computer Science ›› 2021, Vol. 48 ›› Issue (7): 238-244.doi: 10.11896/jsjkx.200600043

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Multi-scale Multi-granularity Feature for Pedestrian Re-identification

WANG Dong1, ZHOU Da-ke1,2, HUANG You-da1 , YANG Xin1   

  1. 1 School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China
    2 Jiangsu Key Laboratory of Internet of Things and Control Technologies (Nanjing University of Aeronautics and Astronautics),Nanjing 211100,China
  • Received:2020-06-05 Revised:2020-09-18 Online:2021-07-15 Published:2021-07-02
  • About author:WANG Dong,born in 1996,postgra-duate.His main research interests include target detection,pedestrian re-identification and target tracking.(m15150690108@163.com)
    ZHOU Da-ke,born in 1974,Ph.D,associate professor.His main research in-terests include digital image processing,computer vision and machine learning.
  • Supported by:
    National Natural Science Foundation of China(61573182).

Abstract: In order to address the problem of insufficient discriminative features for pedestrian re-identification extracted by exis-ting convolutional neural network,a novel multi-scale multi-granularity feature learning for pedestrian re-identification method is proposed.In the training phase,the method extracts multi-scale features at different stages of the convolutional neural network,and then blocks and pools these feature maps to obtain multi-granularity features containing global and local features,uses uncertainty to weight Softmax loss and triples loss and to supervise training process on feature vectors.In the inference phase,the obtained multi-scale multi-granularity features are concatenated,and finally the concatenated features are used to perform similarity matching in the gallery.Experiments on the Market-1501 and DukeMTMC-ReID datasets show that the proposed method improves the Rank-1 evaluation index by 4.3% and 3.6%,respectively,compared with the benchmark network ResNet-50,and improves the mAP evaluation index respectively 6.2% and 6.6%.The results show that the proposed method can enhance the discrimination of extracted features and improve the performance of pedestrian re-identification.

Key words: Convolutional neural network, Machine vision, Multi-granularity features, Multi-scale features, Pedestrian re-identification

CLC Number: 

  • TP399
[1]LUO H,JIANG W,FAN X,et al.A Survey on Deep Learning Based Person Re-identification[J].Acta Automatica Sinic,2019,45(11):2032-2049.
[2]MARTIN K,HIRZER M,WOHLHART P,et al.Large ScaleMetric Learning from Equivalence Constraints[C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE Press,2012:2288-2295.
[3]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Press,2015:2197-2206.
[4]HUAN X Y,XU J L,GUO G,et al.Real-time pedestrian re-reco-gnition based on enhanced aggregate channel features[J].Progress in Laser and Optoelectronics,2017(9):119-127.
[5]ZHENG L,YANG Y,HAUPTMANN A G.Person re-identification:Past,present and future [J].arXiv:1610.02984.
[6]HERMANS A,BEYER L,LEIBE B.In Defense of the Triplet Loss for Person Re-Identification[J].arXiv:1703.07737.
[7]ZHANG G N,WANG J B,ZHANG Y F,et al.Pedestrian recognition method based on feature fusion[J].Computer Engineering and Applications,2017(12):190-194,245.
[8]WEI L,ZHANG S,YAO H,et al.GLAD:Global-Local-Alignment Descriptor for Pedestrian Retrieval[C]//Proceedings of the 25th ACM international conference on Multimedia.New York:ACM Press,2017:420-428.
[9]SU C,LI J,ZHANG S,et al.Pose-driven Deep Convolutional Model for Person Re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:3980-3989.
[10]ZHAO H,TIAN M,SUN S,et al.Spindle Net:Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:1077-1085.
[11]SUN Y,ZHENG L,YANG Y,et al.Beyond Part Models:Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)[C]//European Conference on Computer Vision.Munich:IEEE Press,2018:480-496.
[12]LIU Z Y,WAN P P.Feature extraction method for pedestrian re-recognition based on attention mechanism[J].Journal of Computer Applications,2020,40(3):672-676.
[13]LI W,ZHU X,GONG S.Harmonious Attention Network for Person Re-Identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:2285-2294.
[14]SI J,ZHANG H,LI C G,et al.Dual Attention Matching Network for Context-Aware Feature Sequence based Person Re-Identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:5363-5372.
[15]ZHONG Z,ZHENG L,ZHENG Z D,et al.CamStyle:A Novel Data Augmentation Method for Person Re-Identification[J].IEEE Transactions on Image Processing,2019,28(3):1176-1190.
[16]ZHANG S L,CAO X.Improved Person Re-Identification Algorithm on Camstyle [J].CEA,2020,56(15):124-131.
[17]ZHONG Z,ZHENG L,KANG G,et al.Random erasing dataaugmentation [J].arXiv:1708.04896.
[18]ZHONG Z,ZHENG L,CAO D,et al.Re-ranking Person Re-identification with k-reciprocal Encoding[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:3652-3661.
[19]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:770-778.
[20]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:2117-2125.
[21]CHRISTIAN S,VINCENT V,SERGER I,et al.Rethinking the inception architecture for computer vision[C]//IEEEConfe-rence on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:2818-2826.
[22]CIPOLLA R,GAL Y,KENDALL A.Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:7482-7491.
[23]ZHENG L,SHEN L Y,TIAN L,et al.Scalable Person Re-identification:A Benchmark[C]//The IEEE InternationalConfe-rence on Computer Vision.Santiago:IEEE Press,2015:1116-1124.
[24]ZHANG X,LUO H,FAN X,et al.Alignedreid:Surpassing human-level performance in person reidentification[J].arXiv:1711.08184.
[25]TAY C,ROY S,YAP K.AANet:Attribute Attention Network for Person Re-Identifications[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:7127-7136.
[26]HOU R B,MA B P,CHANG H,et al.Interaction-and-Aggregation Network for Person Re-identification [C]//The IEEE Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:9317-9326.
[27]LUO H,JIANG W,GU Y,et al.Bag of Tricks and A Strong Baseline for Deep Person Re-identification [C]//The IEEE Conference on Computer Vision and Pattern Recognition Workshops.Long Beach:IEEE Press,2019:4321-4329.
[28]ZHOU K,YANG Y,CAVALLARO A.et al.Omni-Scale Feature Learning for Person Re-Identification[C]//2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE Press,2019:3701-3711.
[1] ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161.
[2] CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85.
[3] ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119.
[4] DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119.
[5] LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131.
[6] XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141.
[7] YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352.
[8] YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357.
[9] ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377.
[10] WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423.
[11] SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440.
[12] SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16.
[13] WU Zi-bin, YAN Qiao. Projected Gradient Descent Algorithm with Momentum [J]. Computer Science, 2022, 49(6A): 178-183.
[14] ZHAO Zheng-peng, LI Jun-gang, PU Yuan-yuan. Low-light Image Enhancement Based on Retinex Theory by Convolutional Neural Network [J]. Computer Science, 2022, 49(6): 199-209.
[15] ZHANG Wen-xuan, WU Qin. Fine-grained Image Classification Based on Multi-branch Attention-augmentation [J]. Computer Science, 2022, 49(5): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy