The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development
Abstract
:1. Introduction
2. Basic Principles and Technology to Produce HELP-UnaG
2.1. Engineered Elastin-like Polypeptides
2.2. Design and Cloning of HELP in E. coli
2.3. Purification of HELPs
2.4. Physico–Chemical Features of HELP
2.5. HELP Recombinant Fusion Proteins
2.6. UnaG
3. HUG Assay: Features and Use for the Fluorometric Analysis of Bile Pigments
3.1. Design and Cloning of HUG in E. coli
3.2. The Protocol to Prepare Standardized Lots of HUG
3.3. Physico–Chemical Features of HUG
3.4. The Protocol to Prepare Standard Solutions of Bilirubin
3.5. The HUG-Based Method for the Nanoscale Analysis of Bilirubin
3.6. The Upgraded HUG Method for the Analysis of Biliverdin and Bilirubin Glucuronide
3.7. The Technological Readiness Level of the HUG Assay
4. Bile Pigment Analysis in Biology and Medicine: Theory and Applications
4.1. Sources of Heme
4.2. Synthesis of Bile Pigments
4.3. Bilirubin Elimination
4.4. The Bioactivity of Bile Pigments
4.4.1. Biliverdin
4.4.2. Bilirubin: Observational Studies
4.4.3. Bilirubin: Mechanistic Studies
5. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Bandiera, A.; Corich, L.; Tommasi, S.; De Bortoli, M.; Pelizzo, P.; Stebel, M.; Paladin, D.; Passamonti, S. Human Elastin-like Polypeptides as a Versatile Platform for Exploitation of Ultrasensitive Bilirubin Detection by UnaG. Biotechnol. Bioeng. 2020, 117, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A.; Sist, P.; Urbani, R. Comparison of Thermal Behavior of Two Recombinantly Expressed Human Elastin-like Polypeptides for Cell Culture Applications. Biomacromolecules 2010, 11, 3256–3265. [Google Scholar] [CrossRef]
- Kumagai, A.; Ando, R.; Miyatake, H.; Greimel, P.; Kobayashi, T.; Hirabayashi, Y.; Shimogori, T.; Miyawaki, A. A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell 2013, 153, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Schoissengeier, V.; Maqboul, L.; Weber, D.; Grune, T.; Bürkle, A.; Moreno-Villaneuva, M.; Franceschi, C.; Capri, M.; Bernhard, J.; Toussaint, O.; et al. Association between Bilirubin and Biomarkers of Metabolic Health and Oxidative Stress in the MARK-AGE Cohort. iScience 2024, 27, 110234. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.M.A. Dynamic Tests to Study Liver Function. Eur. Rev. Med. Pharmacol. Sci. 2004, 8, 19–21. [Google Scholar] [PubMed]
- Fevery, J. Bilirubin in Clinical Practice: A Review. Liver Int. 2008, 28, 592–605. [Google Scholar] [CrossRef]
- Vítek, L. Bilirubin as a Predictor of Diseases of Civilization. Is It Time to Establish Decision Limits for Serum Bilirubin Concentrations? Arch. Biochem. Biophys. 2019, 672, 108062. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.G.; Levitt, M.D. Development of a Pharmacokinetic Model That Accounts for the Plasma Concentrations of Conjugated and Unconjugated Bilirubin Observed in a Variety of Disease States. Clin. Exp. Gastroenterol. 2023, 16, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Héder, M. From NASA to EU: The Evolution of the TRL Scale in Public. Sector Innovation. Innov. J. 2017, 22, 1–23. [Google Scholar]
- Savoini, A.; Tronchin, A. Definition of technology readiness levels (trl) and application to biomedical field. In Trans2care. Cross-Border Italy-Slovenia Biomedical Research. Are We Ready for Horizon 2020? Gustincich, S., Lah Turnšek, T., Passamonti, S., Peterlin, B., Pišot, R., Storici, P., Eds.; EUT Edizioni Università di Trieste: Trieste, Italy, 2014; pp. 421–424. Available online: http://hdl.handle.net/10077/10261 (accessed on 9 January 2025).
- D’Andrea, P.; Scaini, D.; Severino, L.U.; Borelli, V.; Passamonti, S.; Lorenzon, P.; Bandiera, A. In Vitro Myogenesis Induced by Human Recombinant Elastin-like Proteins. Biomaterials 2015, 67, 240–253. [Google Scholar] [CrossRef]
- D’Andrea, P.; Sciancalepore, M.; Veltruska, K.; Lorenzon, P.; Bandiera, A. Epidermal Growth Factor—Based Adhesion Substrates Elicit Myoblast Scattering, Proliferation, Differentiation and Promote Satellite Cell Myogenic Activation. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 504–517. [Google Scholar] [CrossRef]
- Depenveiller, C.; Baud, S.; Belloy, N.; Bochicchio, B.; Dandurand, J.; Dauchez, M.; Pepe, A.; Pomès, R.; Samouillan, V.; Debelle, L. Structural and Physical Basis for the Elasticity of Elastin. Q. Rev. Biophys. 2024, 57, e3. [Google Scholar] [CrossRef] [PubMed]
- Ozsvar, J.; Yang, C.; Cain, S.A.; Baldock, C.; Tarakanova, A.; Weiss, A.S. Tropoelastin and Elastin Assembly. Front. Bioeng. Biotechnol. 2021, 9, 643110. [Google Scholar] [CrossRef] [PubMed]
- Urry, D.W. Elastic Molecular Machines in Metabolism and Soft-Tissue Restoration. Trends Biotechnol. 1999, 17, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Urry, D.W.; Long, M.M.; Cox, B.A.; Ohnishi, T.; Mitchell, L.W.; Jacobs, M. The Synthetic Polypentapeptide of Elastin Coacervates and Forms Filamentous Aggregates. Biochim. Biophys. Acta (BBA) Protein Struct. 1974, 371, 597–602. [Google Scholar] [CrossRef]
- Urry, D.W. Free Energy Transduction in Polypeptides and Proteins Based on Inverse Temperature Transitions. Prog. Biophys. Mol. Biol. 1992, 57, 23–57. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Dzuricky, M.; Chilkoti, A. Elastin-like Polypeptides as Models of Intrinsically Disordered Proteins. FEBS Lett. 2015, 589, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Alonso, D.O.V.; Daggett, V. The Molecular Basis for the Inverse Temperature Transition of Elastin11Edited by A. R. Fersht. J. Mol. Biol. 2001, 305, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Perticaroli, S.; Ehlers, G.; Jalarvo, N.; Katsaras, J.; Nickels, J.D. Elasticity and Inverse Temperature Transition in Elastin. J. Phys. Chem. Lett. 2015, 6, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Garanger, E.; Lecommandoux, S. Emerging Opportunities in Bioconjugates of Elastin-like Polypeptides with Synthetic or Natural Polymers. Adv. Drug Deliv. Rev. 2022, 191, 114589. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Quantification of the Effects of Chain Length and Concentration on the Thermal Behavior of Elastin-like Polypeptides. Biomacromolecules 2004, 5, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Won, J.I. Thermal Behaviors of Elastin-like Polypeptides (ELPs) According to Their Physical Properties and Environmental Conditions. Biotechnol. Bioprocess Eng. 2009, 14, 662–667. [Google Scholar] [CrossRef]
- López Barreiro, D.; Folch-Fortuny, A.; Muntz, I.; Thies, J.C.; Sagt, C.M.J.; Koenderink, G.H. Sequence Control of the Self-Assembly of Elastin-like Polypeptides into Hydrogels with Bespoke Viscoelastic and Structural Properties. Biomacromolecules 2023, 24, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T.; Hnatuszko-Konka, K.; Gerszberg, A.; Kononowicz, A.K. Elastin-like Polypeptides as a Promising Family of Genetically-Engineered Protein Based Polymers. World J. Microbiol. Biotechnol. 2014, 30, 2141–2152. [Google Scholar] [CrossRef]
- Bandiera, A.; Taglienti, A.; Micali, F.; Pani, B.; Tamaro, M.; Crescenzi, V.; Manzini, G. Expression and Characterization of Human-elastin-repeat-based Temperature-responsive Protein Polymers for Biotechnological Purposes. Biotechnol. Appl. Biochem. 2005, 42, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A. Assembly and optimization of expression of synthetic genes derived from the human elastin repeated motif. Prep. Biochem. Biotechnol. 2010, 40, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, S.; Pourhassan-Moghaddam, M.; Wood, D.W.; Majdi, H.; Zarghami, N. Current Affinity Approaches for Purification of Recombinant Proteins. Cogent Biol. 2019, 5, 1665406. [Google Scholar] [CrossRef]
- Haas, S.; Desombre, M.; Kirschhöfer, F.; Huber, M.C.; Schiller, S.M.; Hubbuch, J. Purification of a Hydrophobic Elastin-like Protein Toward Scale-Suitable Production of Biomaterials. Front. Bioeng. Biotechnol. 2022, 10, 878838. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.; Zachariou, M. Immobilized Metal Ion Affinity Chromatography of Native Proteins. In Affinity Chromatography; Humana Press: Totowa, NJ, USA, 2008; pp. 25–36. [Google Scholar]
- Verheul, R.; Sweet, C.; Thompson, D.H. Rapid and Simple Purification of Elastin-like Polypeptides Directly from Whole Cells and Cell Lysates by Organic Solvent Extraction. Biomater. Sci. 2018, 6, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Sweet, C.; Aayush, A.; Readnour, L.; Solomon, K.V.; Thompson, D.H. Development of a Fast Organic Extraction–Precipitation Method for Improved Purification of Elastin-like Polypeptides That Is Independent of Sequence and Molecular Weight. Biomacromolecules 2021, 22, 1990–1998. [Google Scholar] [CrossRef]
- Riziotis, I.G.; Lamprou, P.; Papachristou, E.; Mantsou, A.; Karolidis, G.; Papi, R.; Choli-Papadopoulou, T. De Novo Synthesis of Elastin-like Polypeptides (ELPs): An Applied Overview on the Current Experimental Techniques. ACS Biomater. Sci. Eng. 2021, 7, 5064–5077. [Google Scholar] [CrossRef]
- Mills, C.E.; Ding, E.; Olsen, B. Protein Purification by Ethanol-Induced Phase Transitions of the Elastin-like Polypeptide (ELP). Ind. Eng. Chem. Res. 2019, 58, 11698–11709. [Google Scholar] [CrossRef]
- Darji, S.; Aayush, A.; Estes, K.M.; Strock, J.D.; Thompson, D.H. Unravelling the Mechanism of Elastin-like Polypeptide-Enzyme Fusion Stabilization in Organic Solvents. Biomacromolecules 2024, 25, 272–281. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Purification of Recombinant Proteins by Fusion with Thermally-Responsive Polypeptides. Nat. Biotechnol. 1999, 17, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Protein Purification by Inverse Transition Cycling. In Protein-Protein Interactions: A Molecular Cloning Manual; Golemis, E.A., Adams, P.D., Eds.; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2002; pp. 329–344. [Google Scholar]
- Hassouneh, W.; Christensen, T.; Chilkoti, A. Elastin-like Polypeptides as a Purification Tag for Recombinant Proteins. Curr. Protoc. Protein Sci. 2010, 61, 6–11. [Google Scholar] [CrossRef]
- MacEwan, S.R.; Hassouneh, W.; Chilkoti, A. Non-Chromatographic Purification of Recombinant Elastin-like Polypeptides and Their Fusions with Peptides and Proteins from Escherichia coli. J. Vis. Exp. 2014, 88, 51583. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Xia, Z.; Hao, G.; Tuffour, A.; Yan, L.; Chen, J.; Zhu, Y.; Lin, F.; Zhou, Y. Enhancing the Purification and Stability of Superoxide Dismutase by Fusion with Thermoresponsive Self-Assembly of Elastin like Polypeptide. ChemistrySelect 2024, 9, e202401100. [Google Scholar] [CrossRef]
- Corich, L.; Busetti, M.; Petix, V.; Passamonti, S.; Bandiera, A. Evaluation of a Biomimetic 3D Substrate Based on the Human Elastin-like Polypeptides (HELPs) Model System for Elastolytic Activity Detection. J. Biotechnol. 2017, 255, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chilkoti, A.; Dreher, M.R.; Meyer, D.E. Design of Thermally Responsive, Recombinant Polypeptide Carriers for Targeted Drug Delivery. Adv. Drug Deliv. Rev. 2002, 54, 1093–1111. [Google Scholar] [CrossRef]
- Luan, C.; Parker, T.M.; Prasad, K.U.; Urry, D.W. Differential Scanning Calorimetry Studies of NaCl Effect on the Inverse Temperature Transition of Some Elastin-based Polytetra-, Polypenta-, and Polynonapeptides. Biopolymers 1991, 31, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A.; Sist, P.; Terdoslavich, M.; Urbani, U. Phase Transition and Particle Formation of a Human Elastin-like Polypeptide. In Proceedings of the 35th Annual Northeast Bioengineering Conference, Cambridge, MA, USA, 3–5 April 2009; IEEE: New York, NY, USA, 2009; pp. 135–136. [Google Scholar] [CrossRef]
- Sist, P.; Bandiera, A.; Urbani, R.; Passamonti, S. Macromolecular and Solution Properties of the Recombinant Fusion Protein HUG. Biomacromolecules 2022, 23, 3336–3348. [Google Scholar] [CrossRef] [PubMed]
- Bellingham, C.M.; Woodhouse, K.A.; Robson, P.; Rothstein, S.J.; Keeley, F.W. Self-Aggregation Characteristics of Recombinantly Expressed Human Elastin Polypeptides. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2001, 1550, 6–19. [Google Scholar] [CrossRef]
- Reguera, J.; Urry, D.W.; Parker, T.M.; McPherson, D.T.; Rodríguez-Cabello, J.C. Effect of NaCl on the Exothermic and Endothermic Components of the Inverse Temperature Transition of a Model Elastin-like Polymer. Biomacromolecules 2007, 8, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A.; Colomina-Alfaro, L.; Sist, P.; Gomez d’Ayala, G.; Zuppardi, F.; Cerruti, P.; Catanzano, O.; Passamonti, S.; Urbani, R. Physicochemical Characterization of a Biomimetic, Elastin-Inspired Polypeptide with Enhanced Thermoresponsive Properties and Improved Cell Adhesion. Biomacromolecules 2023, 24, 5277–5289. [Google Scholar] [CrossRef] [PubMed]
- Colomina-Alfaro, L.; Sist, P.; Marchesan, S.; Urbani, R.; Stamboulis, A.; Bandiera, A. A Versatile Elastin-like Carrier for Bioactive Antimicrobial Peptide Production and Delivery. Macromol. Biosci. 2024, 24, 2300236. [Google Scholar] [CrossRef]
- Urry, D.W. Physical Chemistry of Biological Free Energy Transduction As Demonstrated by ElasticProtein-Based Polymers. J. Phys. Chem. B 1997, 101, 11007–11028. [Google Scholar] [CrossRef]
- Urry, D.W.; Peng, S.; Xu, J.; McPherson, D.T. Characterization of Waters of Hydrophobic Hydration by Microwave Dielectric Relaxation. J. Am. Chem. Soc. 1997, 119, 1161–1162. [Google Scholar] [CrossRef]
- Reiersen, H.; Clarke, A.R.; Rees, A.R. Short Elastin-like Peptides Exhibit the Same Temperature-Induced Structural Transitions as Elastin Polymers: Implications for Protein Engineering. J. Mol. Biol. 1998, 283, 255–264. [Google Scholar] [CrossRef]
- Nuhn, H.; Klok, H.A. Secondary Structure Formation and LCST Behavior of Short Elastin-like Peptides. Biomacromolecules 2008, 9, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Garnier, J.; Gibrat, J.-F.; Robson, B. [32] GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 266, pp. 540–553. ISBN 0076-6879. [Google Scholar]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics; Dover Publications, Ed.; Unabridged; Courier Corporation: Washington, DC, USA, 2000. [Google Scholar]
- Zhang, Y.; Gao, S.; Qi, X.; Zhu, S.; Xu, S.; Liang, Y.; Kong, F.; Yang, S.; Wang, R.; Wang, Y.; et al. Novel Biocatalytic Strategy of Levan: His-ELP-Intein-Tagged Protein Purification and Biomimetic Mineralization. Carbohydr. Polym. 2022, 288, 119398. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.; Conrad, U. Membrane-Based Inverse Transition Cycling: An Improved Means for Purifying Plant-Derived Recombinant Protein-Elastin-like Polypeptide Fusions. Int. J. Mol. Sci. 2011, 12, 2808–2821. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.; Koria, P. Growth Factor Functionalized Biomaterial for Drug Delivery and Tissue Regeneration. J. Bioact. Compat. Polym. 2017, 32, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Sarvestani, R.; Latifi, A.M.; Alizadeh, H.; Mirzaei, M. An Approach for Recombinant Epidermal Growth Factor Purification Using an Elastin-like Protein Tag. J. Appl. Biotechnol. Rep. 2021, 8, 127–132. [Google Scholar] [CrossRef]
- Lee, K.M.; Jung, G.S.; Park, J.K.; Choi, S.K.; Jeon, W.B. Effects of Arg-Gly-Asp-Modified Elastin-like Polypeptide on Pseudoislet Formation via up-Regulation of Cell Adhesion Molecules and Extracellular Matrix Proteins. Acta Biomater. 2013, 9, 5600–5608. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Jung, G.S.; Jeon, W.B.; Lee, K.M. Arg-Gly-Asp-Modified Elastin-like Polypeptide Regulates Cell Proliferation and Cell Cycle Proteins via the Phosphorylation of Erk and Akt in Pancreatic β-Cell. Heliyon 2020, 6, e04918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gilchrist, A.E.; Heilshorn, S.C. Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds. Adv. Mater. 2024, 36, 2407794. [Google Scholar] [CrossRef] [PubMed]
- Colomina-Alfaro, L.; Sist, P.; D’Andrea, P.; Urbani, R.; Marchesan, S.; Stamboulis, A.; Bandiera, A. Materials Derived from the Human Elastin-like Polypeptide Fusion with an Antimicrobial Peptide Strongly Promote Cell Adhesion. J. Mater. Chem. B 2024. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Ke, T.; Li, X.; Mao, P.H.; Jin, X.; Hui, F.L.; Ma, X.D.; Ma, L.X. Expression and Purification of an Antimicrobial Peptide by Fusion with Elastin-like Polypeptides in Escherichia coli. Appl. Biochem. Biotechnol. 2010, 160, 2377–2387. [Google Scholar] [CrossRef]
- Atefyekta, S.; Pihl, M.; Lindsay, C.; Heilshorn, S.C.; Andersson, M. Antibiofilm Elastin-like Polypeptide Coatings: Functionality, Stability, and Selectivity. Acta Biomater. 2019, 83, 245–256. [Google Scholar] [CrossRef]
- Shitashima, Y.; Shimozawa, T.; Kumagai, A.; Miyawaki, A.; Asahi, T. Two Distinct Fluorescence States of the Ligand-Induced Green Fluorescent Protein UnaG. Biophys. J. 2017, 113, 2805–2814. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.T.H.; Nam, K.; Yeh, J.T.H.; Perrimon, N. EUnaG: A New Ligand-Inducible Fluorescent Reporter to Detect Drug Transporter Activity in Live Cells. Sci. Rep. 2017, 7, 41619. [Google Scholar] [CrossRef]
- Erapaneedi, R.; Belousov, V.V.; Schäfers, M.; Kiefer, F. A Novel Family of Fluorescent Hypoxia Sensors Reveal Strong Heterogeneity in Tumor Hypoxia at the Cellular Level. EMBO J. 2016, 35, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Uda, Y.; Goto, Y.; Oda, S.; Kohchi, T.; Matsuda, M.; Aoki, K. Efficient Synthesis of Phycocyanobilin in Mammalian Cells for Optogenetic Control of Cell Signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 11962–11967. [Google Scholar] [CrossRef] [PubMed]
- Iwatani, S.; Yamana, K.; Nakamura, H.; Nishida, K.; Morisawa, T.; Mizobuchi, M.; Osawa, K.; Iijima, K.; Morioka, I. A Novel Method for Measuring Serum Unbound Bilirubin Levels Using Glucose Oxidase–Peroxidase and Bilirubin-Inducible Fluorescent Protein (UnaG): No Influence of Direct Bilirubin. Int. J. Mol. Sci. 2020, 21, 6778. [Google Scholar] [CrossRef] [PubMed]
- Tien Tai, T.; Adachi, Y.; Taketani, S. A Fluorescence-Based Quantitative Analysis for Total Bilirubin in Blood and Urine. Lab. Med. 2022, 53, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Moriwaki, K.; Asuka, T.; Nakai, R.; Kanda, S.; Taniguchi, M.; Sugiyama, T.; Shin-Ichiro, Y.; Kunii, M.; Nagasawa, T.; et al. EHBP1L1, an Apicobasal Polarity Regulator, Is Critical for Nuclear Polarization during Enucleation of Erythroblasts. Blood Adv. 2023, 7, 3382–3394. [Google Scholar] [CrossRef] [PubMed]
- Al Reza, H.; Farooqui, Z.; Al Reza, A.; Conroy, C.; Iwasawa, K.; Ogura, Y.; Okita, K.; Osafune, K.; Takebe, T. Synthetic Augmentation of Bilirubin Metabolism in Human Pluripotent Stem Cell-Derived Liver Organoids. Stem Cell Rep. 2023, 18, 2071–2083. [Google Scholar] [CrossRef]
- Fang, B.; Card, P.D.; Chen, J.; Li, L.; Laughlin, T.; Jarrold, B.; Zhao, W.; Benham, A.M.; Määttä, A.T.; Hawkins, T.J.; et al. A Potential Role of Keratinocyte-Derived Bilirubin in Human Skin Yellowness and Its Amelioration by Sucrose Laurate/Dilaurate. Int. J. Mol. Sci. 2022, 23, 5884. [Google Scholar] [CrossRef]
- Iwatani, S.; Nakamura, H.; Kurokawa, D.; Yamana, K.; Nishida, K.; Fukushima, S.; Koda, T.; Nishimura, N.; Nishio, H.; Iijima, K.; et al. Fluorescent Protein-Based Detection of Unconjugated Bilirubin in Newborn Serum. Sci. Rep. 2016, 6, 28489. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.A.; Mu, A.; Tai, T.T.; Kitajima, S.; Taketani, S. Continuous de Novo Biosynthesis of Haem and Its Rapid Turnover to Bilirubin Are Necessary for Cytoprotection against Cell Damage. Sci. Rep. 2015, 5, 10488. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y.; Ishizawa, T.; Kokudo, N.; Kuriki, Y.; Iwatate, R.J.; Kamiya, M.; Urano, Y.; Kumagai, A.; Kurokawa, H.; Miyawaki, A.; et al. On-Site Monitoring of Postoperative Bile Leakage Using Bilirubin-Inducible Fluorescent Protein. World J. Surg. 2020, 44, 4245–4253. [Google Scholar] [CrossRef] [PubMed]
- Adeosun, S.; Moore, K.; Lang, D.; Nwaneri, A.; Hinds, T., Jr.; Stec, D. A Novel Fluorescence-Based Assay for the Measurement of Biliverdin Reductase Activity. React. Oxyg. Species 2018, 5, 35–45. [Google Scholar] [CrossRef]
- Ishikawa, K.; Kodama, Y. Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. Plant Cell Physiol. 2024, 65, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Kataura, T.; Saiki, S.; Ishikawa, K.I.; Akamatsu, W.; Sasazawa, Y.; Hattori, N.; Imoto, M. BRUP-1, an Intracellular Bilirubin Modulator, Exerts Neuroprotective Activity in a Cellular Parkinson’s Disease Model. J. Neurochem. 2020, 155, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Nam, E.; Lee, H.K.; Lim, M.H.; Rhee, H.W. In Cellulo Mapping of Subcellular Localized Bilirubin. ACS Chem. Biol. 2016, 11, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Chen, L.C.; Rakhit, R.; Wandless, T.J. A Novel Destabilizing Domain Based on a Small-Molecule Dependent Fluorophore. ACS Chem. Biol. 2016, 11, 2101–2104. [Google Scholar] [CrossRef] [PubMed]
- Vasavda, C.; Kothari, R.; Malla, A.P.; Tokhunts, R.; Lin, A.; Ji, M.; Ricco, C.; Xu, R.; Saavedra, H.G.; Sbodio, J.I.; et al. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem. Biol. 2019, 26, 1450–1460.e7. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Kwon, J.; Shim, S.H. Enhanced UnaG with Minimal Labeling Artifact for Single-Molecule Localization Microscopy. Front. Mol. Biosci. 2021, 8, 647590. [Google Scholar] [CrossRef] [PubMed]
- Shum, M.; Shintre, C.A.; Althoff, T.; Gutierrez, V.; Segawa, M.; Saxberg, A.D.; Martinez, M.; Adamson, R.; Young, M.R.; Faust, B.; et al. ABCB10 Exports Mitochondrial Biliverdin, Driving Metabolic Maladaptation in Obesity. Sci. Transl. Med. 2021, 13, eabd1869. [Google Scholar] [CrossRef]
- Ruskowitz, E.R.; Munoz-Robles, B.G.; Strange, A.C.; Butcher, C.H.; Kurniawan, S.; Filteau, J.R.; DeForest, C.A. Spatiotemporal Functional Assembly of Split Protein Pairs through a Light-Activated SpyLigation. Nat. Chem. 2023, 15, 694–704. [Google Scholar] [CrossRef]
- Yan, D.; Wu, X.T.; Chen, X.; Wang, J.; Ge, F.; Wu, M.; Wu, J.; Zhang, N.; Xiao, M.; Wu, X.; et al. Maternal Linoleic Acid-Rich Diet Ameliorates Bilirubin Neurotoxicity in Offspring Mice. Cell Death Discov. 2024, 10, 329. [Google Scholar] [CrossRef]
- Uchida, Y.; Takahashi, Y.; Kurata, C.; Morimoto, Y.; Ohtani, E.; Tosaki, A.; Kumagai, A.; Greimel, P.; Nishikubo, T.; Miyawaki, A. Urinary Lumirubin Excretion in Jaundiced Preterm Neonates during Phototherapy with Blue Light-Emitting Diode vs. Green Fluorescent Lamp. Sci. Rep. 2023, 13, 18359. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Takahashi, Y.; Morimoto, Y.; Greimel, P.; Tosaki, A.; Kumagai, A.; Nishikubo, T.; Miyawaki, A. Noninvasive Monitoring of Bilirubin Photoisomer Excretion during Phototherapy. Sci. Rep. 2022, 12, 11798. [Google Scholar] [CrossRef]
- Chia, H.E.; Zuo, T.; Koropatkin, N.M.; Marsh, E.N.G.; Biteen, J.S. Imaging Living Obligate Anaerobic Bacteria with Bilin-Binding Fluorescent Proteins. Curr. Res. Microb. Sci. 2020, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chia, H.E.; Koebke, K.J.; Rangarajan, A.A.; Koropatkin, N.M.; Marsh, E.N.G.; Biteen, J.S. New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chem. Biol. 2021, 16, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Ishchuk, O.P.; Frost, A.T.; Muñiz-Paredes, F.; Matsumoto, S.; Laforge, N.; Eriksson, N.L.; Martínez, J.L.; Petranovic, D. Improved Production of Human Hemoglobin in Yeast by Engineering Hemoglobin Degradation. Metab. Eng. 2021, 66, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Tchagang, C.F.; Mah, T.F.; Campbell-Valois, F.X. Anaerobic Fluorescent Reporters for Live Imaging of Pseudomonas Aeruginosa. Front. Microbiol. 2023, 14, 1245755. [Google Scholar] [CrossRef]
- Richard, C.S.M.; Dey, H.; Øyen, F.; Maqsood, M.; Blencke, H.M. Outer Membrane Integrity-Dependent Fluorescence of the Japanese Eel UnaG Protein in Live Escherichia coli Cells. Biosensors 2023, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B.; Olajide, O.J.; Bortolussi, G.; Muro, A.F. Activation of Alternative Bilirubin Clearance Pathways Partially Reduces Hyperbilirubinemia in a Mouse Model Lacking Functional Ugt1a1 Activity. Int. J. Mol. Sci. 2022, 23, 10703. [Google Scholar] [CrossRef]
- Liu, H.W.; Lai, K.; Gong, L.N.; Shi, H.B.; Yin, S.K.; Wang, L.Y. Measuring Endogenous Levels of Unconjugated Bilirubin Released from Isolated Murine Brain Tissue during Oxygen-Glucose Deprivation. STAR Protoc. 2023, 4, 102550. [Google Scholar] [CrossRef]
- Zahradník, J.; Dey, D.; Marciano, S.; Kolářová, L.; Charendoff, C.I.; Subtil, A.; Schreiber, G. A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets. ACS Synth. Biol. 2021, 10, 3445–3460. [Google Scholar] [CrossRef]
- To, T.L.; Zhang, Q.; Shu, X. Structure-Guided Design of a Reversible Fluorogenic Reporter of Protein-Protein Interactions. Protein Sci. 2016, 25, 748–753. [Google Scholar] [CrossRef]
- Eaton, H.E.; Kobayashi, T.; Dermody, T.S.; Johnston, R.N.; Jais, P.H.; Shmulevitz, M.; López, S. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. J. Virol. 2017, 91, e02416-16. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Huang, B.; Huang, S.; Zhang, R.; Yan, S.; Yu, X.; Shu, Y.; Zhao, C.; Lei, J.; Zhang, W.; et al. The Development of a Sensitive Fluorescent Protein-Based Transcript Reporter for High Throughput Screening of Negative Modulators of LncRNAs. Genes. Dis. 2018, 5, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ellis, V.D.; Woodman, A.; Zhao, Y.; Arnold, J.J.; Cameron, C.E. RNA-Dependent RNA Polymerase Speed and Fidelity Are Not the Only Determinants of the Mechanism or Efficiency of Recombination. Genes 2019, 10, 968. [Google Scholar] [CrossRef]
- Philip, A.A.; Perry, J.L.; Eaton, H.E.; Shmulevitz, M.; Hyser, J.M.; Patton, J.T. Generation of Recombinant Rotavirus Expressing NSP3-UnaG Fusion Protein by a Simplified Reverse Genetics System. J. Virol. 2019, 93, e01616-19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Chen, R.; Wu, Y.; Yang, X.; Liu, X.; Zeng, S.; Guo, W. UnaG as a Reporter in Adeno-Associated Virus-Mediated Gene Transfer for Biomedical Imaging. J. Biophotonics 2020, 13, e202000182. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.; Cui, J.; Zhang, W.; Wang, Y.; Huang, A.; Hu, J. DNA Engineering and Hepatitis B Virus Replication. Front. Microbiol. 2021, 12, 783040. [Google Scholar] [CrossRef] [PubMed]
- Sam, M.; Selman, M.; Zhao, W.; Jung, J.; Willingham, A.; Phan, U.; Starling, G.C.; Gao, Q. Engineering Oncolytic Coxsackievirus A21 with Small Transgenes and Enabling Cell-Mediated Virus Delivery by Integrating Viral CDNA into the Genome. J. Virol. 2023, 97, e00309-23. [Google Scholar] [CrossRef]
- Okuwa, T.; Himeda, T.; Utani, K.; Higuchi, M. Generation of a Recombinant Saffold Virus Expressing UnaG as a Marker for the Visualization of Viral Infection. Virol. J. 2023, 20, 175. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.; Lidsky, P.V.; Wu, C.T.; Bonser, L.R.; Peng, S.; Garcia-Knight, M.A.; Tassetto, M.; Chung, C.I.; Li, X.; et al. Fluorogenic Reporter Enables Identification of Compounds That Inhibit SARS-CoV-2. Nat. Microbiol. 2023, 8, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Pepelanova, I.; Seliktar, D.; Potekhina, E.; Belousov, V.V.; Scheper, T.; Lavrentieva, A. Live Reporting for Hypoxia: Hypoxia Sensor–Modified Mesenchymal Stem Cells as in Vitro Reporters. Biotechnol. Bioeng. 2020, 117, 3265–3276. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, I.; Kaeppler, J.; Frost, S.; Seymour, L.W.; Jacobus, E.J. Attenuation of the Hypoxia Inducible Factor Pathway after Oncolytic Adenovirus Infection Coincides with Decreased Vessel Perfusion. Cancers 2020, 12, 851. [Google Scholar] [CrossRef] [PubMed]
- Panicucci, G.; Iacopino, S.; De Meo, E.; Perata, P.; Weits, D.A. An Improved HRPE-Based Transcriptional Output Reporter to Detect Hypoxia and Anoxia in Plant Tissue. Biosensors 2020, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Potekhina, E.; Belousov, V.V.; Lavrentieva, A. Hypoxia Onset in Mesenchymal Stem Cell Spheroids: Monitoring with Hypoxia Reporter Cells. Front. Bioeng. Biotechnol. 2021, 9, 611837. [Google Scholar] [CrossRef] [PubMed]
- Sattiraju, A.; Kang, S.; Giotti, B.; Chen, Z.; Marallano, V.J.; Brusco, C.; Ramakrishnan, A.; Shen, L.; Tsankov, A.M.; Hambardzumyan, D.; et al. Hypoxic Niches Attract and Sequester Tumor-Associated Macrophages and Cytotoxic T Cells and Reprogram Them for Immunosuppression. Immunity 2023, 56, 1825–1843.e6. [Google Scholar] [CrossRef] [PubMed]
- Lavilla-Puerta, M.; Giuntoli, B. Assessing In Vivo Oxygen Dynamics Using Plant N-Terminal Degrons in Saccharomyces cerevisiae. In Fluorescent Proteins; Sharma, M., Ed.; Humana: New York, NY, USA, 2023; pp. 269–286. [Google Scholar]
- Dienemann, S.; Schmidt, V.; Fleischhammer, T.; Mueller, J.H.; Lavrentieva, A. Comparative Analysis of Hypoxic Response of Human Microvascular and Umbilical Vein Endothelial Cells in 2D and 3D Cell Culture Systems. J. Cell. Physiol. 2023, 238, 1111–1120. [Google Scholar] [CrossRef]
- Bauer, N.; Maisuls, I.; Pereira da Graça, A.; Reinhardt, D.; Erapaneedi, R.; Kirschnick, N.; Schäfers, M.; Grashoff, C.; Landfester, K.; Vestweber, D.; et al. Genetically Encoded Dual Fluorophore Reporters for Graded Oxygen-Sensing in Light Microscopy. Biosens. Bioelectron. 2023, 221, 114917. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, R.; Yoshida, K.; Oikawa, K.; Takai-Todaka, R.; Kato, A.; Kanamori, K.; Nakanishi, A.; Haga, K.; Katayama, K. Production of Infectious Reporter Murine Norovirus by VP2 Trans-Complementation. J. Virol. 2024, 98, e01261-23. [Google Scholar] [CrossRef]
- Bauer, N.; Kiefer, F. Genetically Encoded Reporters to Monitor Hypoxia. In Hypoxia; Gilkes, D.M., Ed.; Humana: New York, NY, USA, 2024; Volume 2755, pp. 3–29. [Google Scholar]
- Fleischhammer, T.M.; Dienemann, S.; Ulber, N.; Pepelanova, I.; Lavrentieva, A. Detection of Hypoxia in 2D and 3D Cell Culture Systems Using Genetically Encoded Fluorescent Hypoxia Sensors. In Hypoxia; Gilkes, D.M., Ed.; Humana: New York, NY, USA, 2024; Volume 2755, pp. 31–48. [Google Scholar]
- Kwon, J.; Park, J.S.; Kang, M.; Choi, S.; Park, J.; Kim, G.T.; Lee, C.; Cha, S.; Rhee, H.W.; Shim, S.H. Bright Ligand-Activatable Fluorescent Protein for High-Quality Multicolor Live-Cell Super-Resolution Microscopy. Nat. Commun. 2020, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, C.; Gao, Z.; Liu, Y.; Zhao, Y.; Yang, Y.; Chen, J.; Jimenez, R.; Xu, J. Ultrafast Internal Conversion Dynamics of Bilirubin Bound to UnaG and Its N57A Mutant. Phys. Chem. Chem. Phys. 2019, 21, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Laurent, A.D. Exploring Structural Dynamics and Optical Properties of UnaG Fluorescent Protein upon N57 Mutations. Phys. Chem. Chem. Phys. 2022, 24, 3816–3825. [Google Scholar] [CrossRef] [PubMed]
- Eczacioglu, N.; Ulusu, Y.; Gokce, İ.; Lakey, J.H. Investigation of Mutations (L41F, F17M, N57E, Y99F_Y134W) Effects on the TolAIII-UnaG Fluorescence Protein’s Unconjugated Bilirubin (UC-BR) Binding Ability and Thermal Stability Properties. Prep. Biochem. Biotechnol. 2022, 52, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Sist, P.; Saeed, S.; Tramer, F.; Bandiera, A.; Passamonti, S. Standardized Lab-Scale Production of the Recombinant Fusion Protein HUG for the Nanoscale Analysis of Bilirubin. MethodsX 2024, 13, 103001. [Google Scholar] [CrossRef] [PubMed]
- Sist, P.; Tramer, F.; Urbani, R.; Bandiera, A.; Passamonti, S. Preparation and Validation of Nanomolar Aqueous Bilirubin Standard Solutions. MethodsX 2025, 14, 103123. [Google Scholar] [CrossRef]
- Sist, P.; Tramer, F.; Bandiera, A.; Urbani, R.; Redenšek Trampuž, S.; Dolžan, V.; Passamonti, S. Nanoscale Bilirubin Analysis in Translational Research and Precision Medicine by the Recombinant Protein HUG. Int. J. Mol. Sci. 2023, 24, 16289. [Google Scholar] [CrossRef]
- Tramer, F.; Sist, P.; Cardenas-Perez, R.; Urbani, R.; Bortolussi, G.; Passamonti, S. Combined Fluorometric Analysis of Biliverdin and Bilirubin by the Recombinant Protein HUG. MethodsX 2024, 13, 102979. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, P.; Stebel, M.; Medic, N.; Sist, P.; Vanzo, A.; Anesi, A.; Vrhovsek, U.; Tramer, F.; Passamonti, S. Cyanidin 3-Glucoside Targets a Hepatic Bilirubin Transporter in Rats. Biomed. Pharmacother. 2023, 157, 114044. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Chen, R.F. The Fluorescence of Bilirubin-Albumin Complexes. In Fluorescence Techniques in Cell Biology; Springer: Berlin/Heidelberg, Germany, 1973; pp. 273–282. [Google Scholar]
- Tatikolov, A.S.; Pronkin, P.G.; Panova, I.G. Bilirubin: Photophysical and Photochemical Properties, Phototherapy, Analytical Methods of Measurement. A Short Review. Biophys. Chem. 2025, 318, 107378. [Google Scholar] [CrossRef] [PubMed]
- Tonelotto, V.; Costa-Garcia, M.; O’Reilly, E.; Smith, K.F.; Slater, K.; Dillon, E.T.; Pendino, M.; Higgins, C.; Sist, P.; Bosch, R.; et al. 1,4-Dihydroxy Quininib Activates Ferroptosis Pathways in Metastatic Uveal Melanoma and Reveals a Novel Prognostic Biomarker Signature. Cell Death Discov. 2024, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Voltarelli, V.A.; Alves de Souza, R.W.; Miyauchi, K.; Hauser, C.J.; Otterbein, L.E. Heme: The Lord of the Iron Ring. Antioxidants 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.G.; Levitt, M.D. Quantitative Assessment of the Multiple Processes Responsible for Bilirubin Homeostasis in Health and Disease. Clin. Exp. Gastroenterol. 2014, 7, 307–328. [Google Scholar] [CrossRef]
- Ryter, S.W.; Tyrrell, R.M. The Heme Synthesis and Degradation Pathways: Role in Oxidant Sensitivity. Free Radic. Biol. Med. 2000, 28, 289–309. [Google Scholar] [CrossRef]
- Martelanc, M.; Žiberna, L.; Passamonti, S.; Franko, M. Direct Determination of Free Bilirubin in Serum at Sub-Nanomolar Levels. Anal. Chim. Acta 2014, 809, 174–182. [Google Scholar] [CrossRef]
- Dunaway, L.S.; Loeb, S.A.; Petrillo, S.; Tolosano, E.; Isakson, B.E. Heme Metabolism in Nonerythroid Cells. J. Biol. Chem. 2024, 300, 107132. [Google Scholar] [CrossRef]
- Ryter, S.W.; Alam, J.; Choi, A.M.K. Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol. Rev. 2006, 86, 583–650. [Google Scholar] [CrossRef] [PubMed]
- Costa Silva, R.C.M.; Correa, L.H.T. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem. Biophys. 2022, 80, 97–113. [Google Scholar] [CrossRef]
- Čvorović, J.; Passamonti, S. Membrane Transporters for Bilirubin and Its Conjugates: A Systematic Review. Front. Pharmacol. 2017, 8, 887. [Google Scholar] [CrossRef] [PubMed]
- Gåfvels, M.; Holmström, P.; Somell, A.; Sjövall, F.; Svensson, J.O.; Ståhle, L.; Broomé, U.; Stål, P. A Novel Mutation in the Biliverdin Reductase-A Gene Combined with Liver Cirrhosis Results in Hyperbiliverdinaemia (Green Jaundice). Liver Int. 2009, 29, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Huo, S.; Zhou, G.; Li, J.; Yang, Y.; Shao, J. Biliverdin Modulates the Nrf2/A20/EEF1A2 Axis to Alleviate Cerebral Ischemia-Reperfusion Injury by Inhibiting Pyroptosis. Biomed. Pharmacother. 2023, 165, 115057. [Google Scholar] [CrossRef] [PubMed]
- Bortolussi, G.; Shi, X.; Ten Bloemendaal, L.; Banerjee, B.; De Waart, D.R.; Baj, G.; Chen, W.; Oude Elferink, R.P.; Beuers, U.; Paulusma, C.C.; et al. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1−/− Mice: Impact on Redox Status and Metabolism. Antioxidants 2021, 10, 2029. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Xue, K.; Chen, J.; Zhang, Y.; Zhang, G.; Zheng, Z.; Li, Z.; Li, Z.; Wang, F.; Sun, X.; et al. Biliverdin Improved Angiogenesis and Suppressed Apoptosis via PI3K/Akt-Mediated Nrf2 Antioxidant System to Promote Ischemic Flap Survival. Free Radic. Biol. Med. 2024, 225, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Wegiel, B.; Otterbein, L.E. Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase. Front. Pharmacol. 2012, 3, 47. [Google Scholar] [CrossRef] [PubMed]
- Schwertner, H.A.; Jackson, W.G.; Tolan, G. Association of Low Serum Concentration of Bilirubin with Increased Risk of Coronary Artery Disease. Clin. Chem. 1994, 40, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Huang, J.; Zhang, H.; Huang, B.; Wu, X.; Chen, L.; Xia, S.; Dong, X.; Hao, G. Dose-Response Association Between Bilirubin and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Angiology 2022, 73, 911–919. [Google Scholar] [CrossRef]
- Wang, G.; Qiao, L.; Tang, Z.; Zhou, S.; Min, J.; Li, M. Association between Bilirubin Levels and Risk of Stroke: A Systematic Review and Meta-Analysis. BMJ Open 2023, 13, e064433. [Google Scholar] [CrossRef] [PubMed]
- Nikouei, M.; Cheraghi, M.; Ghaempanah, F.; Kohneposhi, P.; Saniee, N.; Hemmatpour, S.; Moradi, Y. The Association between Bilirubin Levels, and the Incidence of Metabolic Syndrome and Diabetes Mellitus: A Systematic Review and Meta-Analysis of Cohort Studies. Clin. Diabetes Endocrinol. 2024, 10, 1. [Google Scholar] [CrossRef]
- Huang, S.-S.; Ding, Y.; Yi, X.-N.; Mao, H.-Y.; Xie, Z.-Y.; Shen, X.-K.; Lu, Y.; Yan, J.; Wang, Y.-W.; Yang, Z.-X. Exploring the Inverse Relationship between Serum Total Bilirubin and Systemic Immune-Inflammation Index: Insights from NHANES Data (2009–2018). Eur. J. Med. Res. 2024, 29, 362. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yu, Z.; Bai, L.; Hou, W.; Tang, S.; Zhang, W.; Chen, X.; Hu, Z.; Duan, Z.; Zheng, S.; et al. Association of Serum Bilirubin with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 869579. [Google Scholar] [CrossRef] [PubMed]
- Marconi, V.C.; Duncan, M.S.; So-Armah, K.; Re, V.L.; Lim, J.K.; Butt, A.A.; Goetz, M.B.; Rodriguez-Barradas, M.C.; Alcorn, C.W.; Lennox, J.; et al. Bilirubin Is Inversely Associated with Cardiovascular Disease Among HIV-Positive and HIV-Negative Individuals in VACS (Veterans Aging Cohort Study). J. Am. Heart Assoc. 2018, 7, e007792. [Google Scholar] [CrossRef] [PubMed]
- Bosma, P.J.; Seppen, J.; Goldhoorn, B.; Bakker, C.; Elferink, R.P.J.O.; Chowdhury, J.R.; Chowdhuryl, N.R.; Jansen, P.L.M. Bilirubin UDP-Glucuronosyltransferase 1 Is the Only Relevant Bilirubin Glucuronidating Isoform in Man. J. Biol. Chem. 1994, 269, 17960–17964. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Su, D.; Ai, L.; Jiang, X.; Wu, C.; Xu, Q.; Wang, X.; Fan, Z. UGT1A1 Sequence Variants Associated with Risk of Adult Hyperbilirubinemia: A Quantitative Analysis. Gene 2014, 552, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Kajikawa, M.; Matsumoto, T.; Kihara, Y.; Chayama, K.; et al. Hyperbilirubinemia, Augmentation of Endothelial Function, and Decrease in Oxidative Stress in Gilbert Syndrome. Circulation 2012, 126, 598–603. [Google Scholar] [CrossRef]
- Horsfall, L.J.; Nazareth, I.; Petersen, I. Cardiovascular Events as a Function of Serum Bilirubin Levels in a Large, Statin-Treated Cohort. Circulation 2012, 126, 2556–2564. [Google Scholar] [CrossRef]
- Bulmer, A.C.; Verkade, H.J.; Wagner, K.-H. Bilirubin and beyond: A Review of Lipid Status in Gilbert’s Syndrome and Its Relevance to Cardiovascular Disease Protection. Prog. Lipid Res. 2013, 52, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Mölzer, C.; Wallner, M.; Kern, C.; Tosevska, A.; Zadnikar, R.; Doberer, D.; Marculescu, R.; Wagner, K.-H. Characteristics of the Heme Catabolic Pathway in Mild Unconjugated Hyperbilirubinemia and Their Associations with Inflammation and Disease Prevention. Sci. Rep. 2017, 7, 755. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Mangoni, A.A. The Role of Bilirubin as a Biomarker of Rheumatic Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2024, 15, 1369284. [Google Scholar] [CrossRef] [PubMed]
- Horsfall, L.J.; Nazareth, I.; Pereira, S.P.; Petersen, I. Gilbert’s Syndrome and the Risk of Death: A Population-Based Cohort Study. J. Gastroenterol. Hepatol. 2013, 28, 1643–1647. [Google Scholar] [CrossRef]
- Farrera, J.-A.; Jaumà, A.; Ribó, J.M.; Asunción Peiré, M.; Parellada, P.P.; Roques-Choua, S.; Bienvenue, E.; Seta, P. The Antioxidant Role of Bile Pigments Evaluated by Chemical Tests. Bioorg Med. Chem. 1994, 2, 181–185. [Google Scholar] [CrossRef]
- Vera, T.; Granger, J.P.; Stec, D.E. Inhibition of Bilirubin Metabolism Induces Moderate Hyperbilirubinemia and Attenuates ANG II-Dependent Hypertension in Mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, R738–R743. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Daiber, A. Direct Antioxidant Properties of Bilirubin and Biliverdin. Is There a Role for Biliverdin Reductase? Front. Pharmacol. 2012, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Ziberna, L.; Martelanc, M.; Franko, M.; Passamonti, S. Bilirubin Is an Endogenous Antioxidant in Human Vascular Endothelial Cells. Sci. Rep. 2016, 6, 29240. [Google Scholar] [CrossRef] [PubMed]
- Stec, D.E.; Hosick, P.A.; Granger, J.P. Bilirubin, Renal Hemodynamics, and Blood Pressure. Front. Pharmacol. 2012, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; McCarty, M.F.; O’Keefe, J.H. Antioxidant Bilirubin Works in Multiple Ways to Reduce Risk for Obesity and Its Health Complications. Open Heart 2018, 5, e000914. [Google Scholar] [CrossRef]
- Nam, J.; Lee, Y.; Yang, Y.; Jeong, S.; Kim, W.; Yoo, J.-W.; Moon, J.-O.; Lee, C.; Chung, H.Y.; Kim, M.-S.; et al. Is It Worth Expending Energy to Convert Biliverdin into Bilirubin? Free Radic. Biol. Med. 2018, 124, 232–240. [Google Scholar] [CrossRef]
- Nobles, C.L.; Green, S.I.; Maresso, A.W. A Product of Heme Catabolism Modulates Bacterial Function and Survival. PLoS Pathog. 2013, 9, e1003507. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L. Bilirubin as a Signaling Molecule. Med. Res. Rev. 2020, 40, 1335–1351. [Google Scholar] [CrossRef] [PubMed]
- Creeden, J.F.; Gordon, D.M.; Stec, D.E.; Hinds, T.D. Bilirubin as a Metabolic Hormone: The Physiological Relevance of Low Levels. Am. J. Physiol.-Endocrinol. Metab. 2021, 320, E191–E207. [Google Scholar] [CrossRef]
- Greaves, R.F.; Kricka, L.; Gruson, D.; Martin, H.; Ferrari, M.; Bernardini, S. Emerging Technology: A Definition for Laboratory Medicine. Clin. Chem. Lab. Med. (CCLM) 2023, 61, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Westenberg, L.E.H.; Been, J.V.; Willemsen, S.P.; Vis, J.Y.; Tintu, A.N.; Bramer, W.M.; Dijk, P.H.; Steegers, E.A.P.; Reiss, I.K.M.; Hulzebos, C.V. Diagnostic Accuracy of Portable, Handheld Point-of-Care Tests vs Laboratory-Based Bilirubin Quantification in Neonates. JAMA Pediatr. 2023, 177, 479. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, C.J.; Borah, A.; Gogoi, P.; Ramchiary, S.S.; Daurai, B.; Gogoi, M.; Saikia, M.J. Development of Non-Invasive Biosensors for Neonatal Jaundice Detection: A Review. Biosensors 2024, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A.; Passamonti, S.; Dolci, L.S.; Focarete, M.L. Composite of Elastin-Based Matrix and Electrospun Poly(L-Lactic Acid) Fibers: A Potential Smart Drug Delivery System. Front. Bioeng. Biotechnol. 2018, 6, 127. [Google Scholar] [CrossRef]
- Bergonzi, C.; d’Ayala, G.G.; Elviri, L.; Laurienzo, P.; Bandiera, A.; Catanzano, O. Alginate/Human Elastin-like Polypeptide Composite Films with Antioxidant Properties for Potential Wound Healing Application. Int. J. Biol. Macromol. 2020, 164, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, A. Transglutaminase-Catalyzed Preparation of Human Elastin-like Polypeptide-Based Three-Dimensional Matrices for Cell Encapsulation. Enzyme Microb. Technol. 2011, 49, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Colomina-Alfaro, L.; Marchesan, S.; Stamboulis, A.; Bandiera, A. Smart Tools for Antimicrobial Peptides Expression and Application: The Elastic Perspective. Biotechnol. Bioeng. 2023, 120, 323–332. [Google Scholar] [CrossRef] [PubMed]
Condition | Specification |
---|---|
Medium and Supple | TB, terrific broth PGB, Phosphate buffer with glycerol |
Recombinant System | NEBExpress®Iq Competent E. coli (High Efficiency) |
Induction OD600 | 0.9–1 |
IPTG final concentration | 0.1 mM |
Growth after induction | 4 h |
Recombinant protein yield | 180 mg/L |
C mg/mL | Solution | Tt °C |
---|---|---|
2.0 | PBS, pH = 7.4 | 33 |
2.0 | Tris, pH = 8.0 Tris, pH = 8.0, 0.15 M NaCl | 30 36 |
2.0 | NaPi, pH = 7.3 NaPi, pH = 7.3, 0.15 M NaCl | 30 39 |
Solvent | C mg/mL | Tt °C | ΔHtr kJ/mol | ΔStr J/molK |
---|---|---|---|---|
PBS pH = 7.4 | 4 | 34 | 216 | 23.9 |
10 mM Tris pH = 8 10 mM Tris pH = 8, 0.15 M NaCl | 8 8 | 29 34 | 198 35 | 655 114 |
10 mM NaPi pH = 6.8 10 mM NaPi pH = 6.8, 0.15 M NaCl | 8 8 | 29.5 39.5 | 6.67 0.141 | 21.8 0.45 |
Application | Purification Method | References |
---|---|---|
Bile pigment detection in biological fluid, cells and medium | - | [67,70,71,72,73,74,75] |
Ni2+ or glutathione-affinity chromatography | [76] | |
Ni-NTA Fast Start kit or similar | [77,78,79] | |
Live-cell imaging | Anti-FLAG immuno-purification from cell lysate | [80] |
Ni2+-NTA agarose beads | [81] | |
- | [77,82,83,84,85,86,87,88] | |
Lumirubin detection in urine | Ni2+ or glutathione-affinity chromatography | [3,89,90] |
Live-cell imaging in bacteria | MBP-trap and His-trap | [91,92,93,94,95] |
Bilirubin in tissues | Crude bacterial lysate (no further purification) | [96,97] |
Probe for yeast display | - | [98] |
BVR assay | Ni2+-NTA Fast Start kit | [79] |
As gene reporter | - | [99,100,101,102,103,104,105,106,107,108] |
Probe for anoxic/hypoxic conditions | - | [69,109,110,111,112,113,114,115,116,117,118,119] |
Fluorescent probe with reversible switching in cells and tissues | GST-purification; ion exchange Chr; size-exclusion chr | [120] |
Structural and functional studies | Ni2+ or glutathione-affinity chromatography | [121] |
MBP-trap and His-trap; gel filtration | [84] | |
His-trap and desalted with a PD-10 column | [66] | |
- | [122,123] |
Validation Parameter | Value | |
---|---|---|
Linearity | range | 0–75 nM |
slope | 785 | |
R2 | 0.9990 | |
LOD | 0.05–10 nM | 0.36 nM |
0.5–50 nM | 1.56 nM | |
LOQ | 0.05–10 nM | 1.10 nM |
0.5–50 nM | 4.75 nM | |
Accuracy (relative error) | range | 1–9% |
median | 4.5% | |
Precision with standard solutions (coefficient of variation) | range | 1.7–5.8% |
median | 2.6% | |
Precision with human plasma (coefficient of variation) | range | 1.9–12.6% |
mean | 6.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sist, P.; Urbani, R.; Tramer, F.; Bandiera, A.; Passamonti, S. The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules 2025, 30, 439. https://doi.org/10.3390/molecules30030439
Sist P, Urbani R, Tramer F, Bandiera A, Passamonti S. The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules. 2025; 30(3):439. https://doi.org/10.3390/molecules30030439
Chicago/Turabian StyleSist, Paola, Ranieri Urbani, Federica Tramer, Antonella Bandiera, and Sabina Passamonti. 2025. "The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development" Molecules 30, no. 3: 439. https://doi.org/10.3390/molecules30030439
APA StyleSist, P., Urbani, R., Tramer, F., Bandiera, A., & Passamonti, S. (2025). The HELP-UnaG Fusion Protein as a Bilirubin Biosensor: From Theory to Mature Technological Development. Molecules, 30(3), 439. https://doi.org/10.3390/molecules30030439