Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Sentinel-1 Data
2.3. AMSR2 Brightness Temperature
3. Method
3.1. Detection of Polynya Area/Extent
3.2. Retrieval of Ice Thickness
3.3. Calculation of Ice Volume
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bromwich, D.H.; Kurtz, D.D. Katabatic wind forcing of the Terra Nova Bay polynya. J. Geophys. Res. 1984, 89, 3561. [Google Scholar] [CrossRef]
- Bromwich, D.; Liu, Z.; Rogers, A.N.; Van Woert, M.L. Winter atmospheric forcing of the Ross Sea polynya. Ocean ICE Atmos. Int. Antarct. Cont. Margin 1998, 75, 101–133. [Google Scholar]
- Bromwich, D.H.; Carrasco, J.F.; Liu, Z.; Tzeng, R.Y. Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the ross ice shelf, Antarctica. J. Geophys. Res.–Atmos. 1993, 98, 13045–13062. [Google Scholar] [CrossRef]
- Sansiviero, M.; Maqueda, M.A.M.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G. Modelling sea ice formation in the Terra Nova Bay polynya. J. Mar. Syst. 2017, 166, 4–25. [Google Scholar] [CrossRef]
- Fusco, G.; Budillon, G.; Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 2009, 29, 1887–1895. [Google Scholar] [CrossRef]
- Kusahara, K.; Hasumi, H.; Tamura, T. Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. J. Geophys. Res.–Oceans 2010, 115, C10006. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.P.; Wadhams, P. A salt flux model for salinity change through ice production in the Greenland Sea, and its relationship to winter convection. J. Geophys. Res. 2003, 108, 3147. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2008, 35, L07606. [Google Scholar] [CrossRef]
- Kimura, N.; Wakatsuchi, M. Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in convergence zones. J. Geophys. Res.–Oceans 2004, 109, C09S03. [Google Scholar] [CrossRef] [Green Version]
- Assmann, K.M.; Hellmer, H.H.; Jacobs, S.S. Amundsen Sea ice production and transport. J. Geophys. Res. 2005, 110, C12013. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Williams, G.D.; Fraser, A.D.; Ohshima, K.I. Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nat. Commun. 2012, 3, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohshima, K.I.; Fukamachi, Y.; Williams, G.D.; Nihashi, S.; Roquet, F.; Kitade, Y.; Tamura, T.; Hirano, D.; Herraiz-Borreguero, L.; Field, I.; et al. Antarctic Bottom Water production by intense sea–ice formation in the Cape Darnley polynya. Nat. Geosci. 2013, 6, 235–240. [Google Scholar] [CrossRef]
- Orsi, A.H.; Johnson, G.C.; Bullister, J.L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 1999, 43, 55–109. [Google Scholar] [CrossRef]
- Kitade, Y.; Shimada, K.; Tamura, T.; Williams, G.D.; Aoki, S.; Fukamachi, Y.; Ohshima, K.I. Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica. Geophys. Res. Lett. 2014, 41, 3528–3534. [Google Scholar] [CrossRef] [Green Version]
- Krumpen, T.; Holemann, J.A.; Willmes, S.; Maqueda, M.A.M.; Busche, T.; Dmitrenko, I.A.; Schroder, D. Sea ice production and water mass modification in the eastern Laptev Sea. J. Geophys. Res.–Oceans 2011, 116, C05014. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Ohshima, K.I.; Fukamachi, Y.; Mizuta, G.; Kusumoto, Y.; Nishioka, J. Observations of frazil ice formation and upward sediment transport in the Sea of Okhotsk: A possible mechanism of iron supply to sea ice. J. Geophys. Res.–Oceans 2017, 122, 788–802. [Google Scholar] [CrossRef]
- Grossmann, S.; Dieckmann, G.S. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea–Ice in the Weddell Sea, Antarctica. Appl. Environ. Microb. 1994, 60, 2746–2753. [Google Scholar] [CrossRef] [Green Version]
- Nihashi, S.; Ohshima, K.I.; Saitoh, S.I. Sea–ice production in the northern Japan Sea. Deep–Sea Res. Part I 2017, 127, 65–76. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Sea–Ice Production in Antarctic Coastal Polynyas Estimated From AMSR2 Data and Its Validation Using AMSR–E and SSM/I–SSMIS Data. IEEE J.–Stars 2017, 10, 3912–3922. [Google Scholar] [CrossRef] [Green Version]
- Hollands, T.; Dierking, W. Dynamics of the Terra Nova Bay Polynya: The potential of multi–sensor satellite observations. Remote Sens. Environ. 2016, 187, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Ohshima, K.I.; Fraser, A.D.; Williams, G.D. Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res.–Oceans 2016, 121, 2967–2979. [Google Scholar] [CrossRef] [Green Version]
- Kashiwase, H.; Ohshima, K.I.; Nihashi, S. Long–term variation in sea ice production and its relation to the intermediate water in the Sea of Okhotsk. Prog. Oceanogr. 2014, 126, 21–32. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I. Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res. 2011, 116, C07030. [Google Scholar] [CrossRef]
- Drucker, R.; Martin, S.; Kwok, R. Sea ice production and export from coastal polynyas in the Weddell and Ross Seas. Geophys. Res. Lett. 2011, 38, L1705. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Drucker, R.S.; Kwok, R. The areas and ice production of the western and central Ross Sea polynyas, 1992–2002, and their relation to the B–15 and C–19 iceberg events of 2000 and 2002. J. Mar. Syst. 2007, 68, 201–214. [Google Scholar] [CrossRef]
- Parmiggiani, F. Multi–year measurement of Terra Nova Bay winter polynya extents. Eur. Phys. J. Plus 2011, 126. [Google Scholar] [CrossRef]
- Toggweiler, J.R.; Samuels, B. Effect of Sea–Ice on the Salinity of Antarctic Bottom Waters. J. Phys. Oceanogr. 1995, 25, 1980–1997. [Google Scholar] [CrossRef] [Green Version]
- Goosse, H.; Campin, J.M.; Fichefet, T.; Deleersnijder, E. Impact of sea–ice formation on the properties of Antarctic bottom water. Ann. Glaciol. 1997, 25, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Ciappa, A.; Pietranera, L.; Budillon, G. Observations of the Terra Nova Bay (Antarctica) polynya by MODIS ice surface temperature imagery from 2005 to 2010. Remote Sens. Environ. 2012, 119, 158–172. [Google Scholar] [CrossRef]
- Aulicino, G.; Sansiviero, M.; Paul, S.; Cesarano, C.; Fusco, G.; Wadhams, P.; Budillon, G. A New Approach for Monitoring the Terra Nova Bay Polynya through MODIS Ice Surface Temperature Imagery and Its Validation during 2010 and 2011 Winter Seasons. Remote Sens. 2018, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Heinemann, G. Long–term coastal–polynya dynamics in the southern Weddell Sea from MODIS thermal–infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef] [Green Version]
- Preusser, A.; Heinemann, G.; Willmes, S.; Paul, S. Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 2016, 10, 3021–3042. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial Feature Reconstruction of Cloud–Covered Areas in Daily MODIS Composites. Remote Sens. 2015, 7, 5042–5056. [Google Scholar] [CrossRef] [Green Version]
- Willmes, S.; Heinemann, G. Pan–Arctic lead detection from MODIS thermal infrared imagery. Ann. Glaciol. 2015, 56, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, V.; Spreen, G.; Haas, C.; Istomina, L.; Kauker, F.; Murashkin, D. The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea– ice concentration dataset. Cryosphere 2019, 13, 2051–2073. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Comiso, J.C.; Gordon, A.L. Antarctic offshore leads and polynyas and oceanographic effects. In Oceanology of the Antarctic Continental Shelf; Jacobs, S.S., Ed.; American Geophysical Union: Washington, DC, USA, 1985; Volume 43, pp. 203–226. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, K.R.; van Dijken, G.L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res.–Oceans 2003, 108, 3271. [Google Scholar] [CrossRef]
- Comiso, J.C.; Kwok, R.; Martin, S.; Gordon, A.L. Variability and trends in sea ice extent and ice production in the Ross Sea. J. Geophys. Res.–Oceans 2011, 116, C04021. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Pang, X.P.; Zhao, X.; Stein, A. Heat Flux Sources Analysis to the Ross Ice Shelf Polynya Ice Production Time Series and the Impact of Wind Forcing. Remote Sens. 2019, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Dokken, S.T.; Winsor, P.; Markus, T.; Askne, J.; Bjork, G. ERS SAR characterization of coastal polynyas in the Arctic and comparison with SSM/I and numerical model investigations. Remote Sens. Environ. 2002, 80, 321–335. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L. High resolution observations of the Terra Nova Bay polynya using COSMO–SkyMed X–SAR and other satellite imagery. J. Mar. Syst. 2013, 113, 42–51. [Google Scholar] [CrossRef]
- Kwok, R.; Comiso, J.C.; Martin, S.; Drucker, R. Ross Sea polynyas: Response of ice concentration retrievals to large areas of thin ice. J. Geophys. Res.–Oceans 2007, 112, C12012. [Google Scholar] [CrossRef] [Green Version]
- Parmiggiani, F. Fluctuations of Terra Nova Bay polynya as observed by active (ASAR) and passive (AMSR–E) microwave radiometers. Int. J. Remote Sens. 2006, 27, 2459–2467. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Davidson, M. CryoSat–2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xie, H.J.; Kern, S.; Wan, W.; Ozsoy, B.; Ackley, S.; Hong, Y. Spatio–temporal variability of Antarctic sea–ice thickness and volume obtained from ICESat data using an innovative algorithm. Remote Sens. Environ. 2018, 219, 44–61. [Google Scholar] [CrossRef]
- Price, D.; Rack, W.; Langhorne, P.J.; Haas, C.; Leonard, G.; Barnsdale, K. The sub–ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice. Cryosphere 2014, 8, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Rack, W.; Haas, C.; Langhorne, P.J. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density. J. Geophys. Res.–Oceans 2013, 118, 5899–5907. [Google Scholar] [CrossRef]
- Xia, W.T.; Xie, H.J. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat–2 using Operation IceBridge Airborne altimetry datasets. Remote Sens. Environ. 2018, 204, 456–471. [Google Scholar] [CrossRef]
- Meier, W.N.; Markus, T.; Comiso, J.C. AMSR–E/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids, Version 1. [ Brightness temperatures at 36 GHz and 85 GHz from 1 January 2017 to 31 March 2019]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2018. Available online: https://nsidc.org/data/au_si12/versions/1 (accessed on 5 August 2019).
- Drucker, R.; Martin, S.; Moritz, R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res.–Oceans 2003, 108, 3149. [Google Scholar] [CrossRef]
- Ackley, S.F.; Stammerjohn, S.; Maksym, T.; Smith, M.; Cassano, J.; Guest, P.; Tison, J.-L.; Delille, B.; Loose, B.; Sedwick, P.; et al. Sea ice production and air-ocean-ice-biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Ann. Glaciol. 2020. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved mapping of sea ice production in the Arctic Ocean using AMSR–E thin ice thickness algorithm. J. Geophys. Res.–Oceans 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Galley, R.J.; Barber, D.G.; Yackel, J.J. On the link between SAR–derived sea ice melt and development of the summer upper ocean mixed layer in the North Open Water Polynya. Int. J. Remote Sens. 2007, 28, 3979–3994. [Google Scholar] [CrossRef]
- Flores, M.M.; Parmiggiani, F.; Lopez, L.L. Automatic Measurement of Polynya Area by Anisotropic Filtering and Markov Random Fields. IEEE J.–Stars 2014, 7, 1665–1674. [Google Scholar] [CrossRef]
Temporal Periods | Mean Daily Area (km2) | Mean Annual Cumulative Volume (km3) | Data Sources | References |
---|---|---|---|---|
1987 | RISP + MSP = 25,000 | SMMR | Zwally et al. (1985) [36] | |
1992–2002 | RISP = 25,000 ± 5000 MSP = 2000 ± 600 | RISP = 500 ± 160 | SSM/I | Martin et al. (2007) [25] |
1992–2001 | RISP + MSP = 390 ± 59 | SSM/I | Tamura et al. (2008) [8] | |
1997–2002 | RISP + MSP = 20,000 | SSM/I | Arrigo and Van Dijken (2003) [37] | |
1992–2008 | RISP + MSP + TNBP = 930,000 | RISP = 602 MSP = 47 | SSM/I | Drucker et al. (2011) [24] |
1992–2013 | RISP + MSP = 22,000 ± 3000 | RISP + MSP = 382 ± 63 | SSM/I | Tamura et al. (2016) [21] |
2000–2008 | RISP + MSP = 30,000 | RISP + MSP = 600 | SSM/I | Comiso et al. (2011) [38] |
1992–1999 | RISP + MSP = 350 | SSM/I | ||
2003–2011 | RISP + MSP = 300 ± 20 RISP + MSP = 316 ± 34 | AMSR–E SSM/I | Nihashi et al. (2017b) [19] | |
2013–2015 | RISP + MSP = 317 ± 18 RISP + MSP = 340 ± 32 | AMSR2 SSMI/S | Nihashi et al. (2017b) [19] | |
2003–2017 | RISP = 164~313 | AMSR–E AMSR2 | Cheng et al. (2019) [39] |
Year | 2017 | 2018 | ||
---|---|---|---|---|
Polynyas | RISP | MSP | RISP | MSP |
Event times | 64 | 26 | 84 | 30 |
Cumulative area (km2) | 1,066,520 | 93,327 | 1,013,906 | 87,682 |
Mean event area (km2) | 16,159 | 3590 | 12,070 | 2923 |
Cumulative Volume (km3) | 188 | 14 | 179 | 17 |
Mean daily area from AMSR2 (km2) | 23,617 | 1782 | 25,901 | 1874 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Xie, H.; Ackley, S.F.; Mestas-Nuñez, A.M. Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images. Remote Sens. 2020, 12, 1484. https://doi.org/10.3390/rs12091484
Dai L, Xie H, Ackley SF, Mestas-Nuñez AM. Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images. Remote Sensing. 2020; 12(9):1484. https://doi.org/10.3390/rs12091484
Chicago/Turabian StyleDai, Liyun, Hongjie Xie, Stephen F. Ackley, and Alberto M. Mestas-Nuñez. 2020. "Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images" Remote Sensing 12, no. 9: 1484. https://doi.org/10.3390/rs12091484
APA StyleDai, L., Xie, H., Ackley, S. F., & Mestas-Nuñez, A. M. (2020). Ice Production in Ross Ice Shelf Polynyas during 2017–2018 from Sentinel–1 SAR Images. Remote Sensing, 12(9), 1484. https://doi.org/10.3390/rs12091484