Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China
Abstract
:1. Introduction
2. Background of Study Area
2.1. Geological Environment
2.2. Historical Land Reclamation
3. Dataset and Methodology
3.1. Dataset
3.2. PT-Based SBAS-InSAR Strategy
3.2.1. Pre-Processing
3.2.2. Improved Point Target Selection
3.2.3. Phase Filtering, Orbital Phase Error Removal and Phase Unwrapping
3.2.4. Modeling of Deformation and Unwrapping Error Checking
4. Results
4.1. Deformation Rate Maps
4.2. Time Series of Selected Points
5. Discussion
5.1. Self-Consistency Checking by Inter-Comparison between the Ascending and Descending InSAR Measurements
5.2. Deformation Associated with Land Reclamation
5.3. Effects of Coastal Subsidence Coupled with Sea Level Changes
5.4. Potential and Limits of InSAR in Mapping Coastal Subsidence
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASAR | Advanced Synthetic Aperture Radar |
DA | Dispersion of Amplitude |
DEM | Digital Elevation Model |
DS | Distributed Scatterers |
ENVISAT | Environmental Satellite |
GPS | Global Positioning System |
InSAR | Synthetic Aperture Radar Interferometry |
LOS | Line-Of-Sight |
Land Reclamation | The process of creating new land from ocean, riverbeds, or lake beds. |
MT-InSAR | Multi-Temporal InSAR |
No. | Number |
PS-InSAR | Persistent Scatterer InSAR |
PT | Point Target |
SBAS | Small Baseline Subset |
SBAS-InSAR | Small Baseline Subset InSAR |
SLC | Single Look Complex |
SNR | Signal-to-Noise Ratio |
SRTM | Shuttle Radar Topography Mission |
TS | Time Series |
3-D | Three-Dimensional |
Appendix A
No. | Acquisition Date | Orbit Number | Perpendicular Baseline (m) | Temporal Baseline (day) | Doppler Baseline (Hz) |
---|---|---|---|---|---|
1 | 28 February 2007 | 26131 | 1.200 | −700 | 25.565 |
2 | 4 April 2007 | 26632 | −44.517 | −665 | −95.094 |
3 | 9 May 2007 | 27133 | 53.848 | −630 | 24.165 |
4 | 13 June 2007 | 27634 | 83.181 | −595 | −35.858 |
5 | 18 July 2007 | 28135 | 249.955 | −560 | −13.692 |
6 | 22 August 2007 | 28636 | 330.813 | −525 | −36.740 |
7 | 31 October 2007 | 29638 | 168.819 | −455 | 10.479 |
8 | 5 December 2007 | 30139 | −198.362 | −420 | 10.734 |
9 | 9 January 2008 | 30640 | 248.996 | −385 | −19.445 |
10 | 19 March 2008 | 31642 | 255.402 | −315 | 22.999 |
11 | 23 April 2008 | 32143 | 141.737 | −280 | 8.279 |
12 | 2 July 2008 | 33145 | −93.116 | −210 | −109.998 |
13 | 6 August 2008 | 33646 | 216.613 | −175 | 23.050 |
14 | 15 October 2008 | 34648 | 45.448 | −105 | 20.116 |
15 | 19 November 2008 | 35149 | −180.867 | −70 | −93.809 |
16 | 28 January 2009 | 36151 | 0.000 | 0 | 0.000 |
17 | 4 March 2009 | 36652 | 67.309 | 35 | 27.292 |
18 | 8 April 2009 | 37153 | −218.997 | 70 | −72.524 |
19 | 13 May 2009 | 37654 | −7.443 | 105 | 7.185 |
20 | 17 June. 2009 | 38155 | −199.092 | 140 | 5.291 |
21 | 22 July 2009 | 38656 | 121.769 | 175 | 67.987 |
22 | 26 August 2009 | 39157 | 274.131 | 210 | −1.431 |
23 | 30 September 2009 | 39658 | −279.599 | 245 | −92.997 |
24 | 13 January 2010 | 41161 | 42.797 | 350 | 3.044 |
25 | 17 February 2010 | 41662 | −116.154 | 385 | −77.225 |
26 | 24 March 2010 | 42163 | 167.457 | 420 | 7.420 |
27 | 28 April 2010 | 42664 | −17.800 | 455 | −89.608 |
28 | 2 June 2010 | 43165 | 201.274 | 490 | 20.132 |
29 | 7 July 2010 | 43666 | −183.277 | 525 | −36.164 |
30 | 11 August 2010 | 44167 | 153.339 | 560 | 8.991 |
31 | 15 September 2010 | 44668 | 311.510 | 595 | −0.209 |
No. | Acquisition Date | Orbit Number | Perpendicular Baseline (m) | Temporal Baseline (day) | Doppler Baseline (Hz) |
---|---|---|---|---|---|
1 | 24 June 2007 | 27784 | −54.492 | −420 | −9.713 |
2 | 29 July 2007 | 28285 | −120.473 | −385 | −6.183 |
3 | 2 September 2007 | 28786 | 64.293 | −350 | −10.988 |
4 | 7 October2007 | 29287 | −177.061 | −315 | −3.644 |
5 | 11 November 2007 | 29788 | 87.049 | −280 | −11.855 |
6 | 16 December 2007 | 30289 | −204.988 | −245 | −9.418 |
7 | 20 January 2008 | 30790 | −212.565 | −210 | −12.067 |
8 | 24 February. 2008 | 31291 | −282.373 | −175 | −6.489 |
9 | 30 March 2008 | 31792 | 137.053 | −140 | −7.713 |
10 | 4 May 2008 | 32293 | −85.548 | −105 | −14.254 |
11 | 8 June 2008 | 32794 | 66.104 | −70 | −8.627 |
12 | 13 July 2008 | 33295 | 174.508 | −35 | −3.449 |
13 | 17 August. 2008 | 33796 | 0.000 | 0 | 0.000 |
14 | 21 September 2008 | 34297 | −184.108 | 35 | 2.401 |
15 | 4 January 2009 | 35800 | 36.880 | 140 | −7.600 |
16 | 8 February 2009 | 36301 | −227.607 | 175 | −7.695 |
17 | 15 March 2009 | 36802 | 395.745 | 210 | −2.732 |
18 | 19 April 2009 | 37303 | −159.084 | 245 | −16.068 |
19 | 24 May 2009 | 37804 | 21.721 | 280 | −17.713 |
20 | 28 June 2009 | 38305 | 156.203 | 315 | −9.648 |
21 | 2 August 2009 | 38806 | −116.555 | 350 | −9.147 |
22 | 6 September 2009 | 39307 | 133.858 | 385 | −8.236 |
23 | 20 December 2009 | 40810 | −153.050 | 490 | −11.066 |
24 | 28 February 2010 | 41812 | −269.032 | 560 | −1.572 |
25 | 4 April 2010 | 42313 | 232.788 | 595 | −21.591 |
26 | 9 May 2010 | 42814 | 171.201 | 630 | −35.714 |
27 | 13 June 2010 | 43315 | 143.627 | 665 | −15.045 |
28 | 22 August 2010 | 44317 | −191.774 | 735 | −7.937 |
Phase Unwrapping Error (rad) | Qianhai Bay | Shenzhen Bay | Whole Area |
---|---|---|---|
Percentage (%) | Percentage (%) | Percentage (%) | |
[−0.5, 0.5] | 82.70 | 83.33 | 85.12 |
[−1.0, 1.0] | 95.35 | 96.06 | 96.53 |
[−1.5, 1.5] | 98.98 | 99.14 | 99.26 |
Phase Unwrapping Error (rad) | Qianhai Bay | Shenzhen Bay | Whole Area |
---|---|---|---|
Percentage (%) | Percentage (%) | Percentage (%) | |
[−0.5, 0.5] | 82.81 | 86.43 | 87.15 |
[−1.0, 1.0] | 96.25 | 97.52 | 97.65 |
[−1.5, 1.5] | 99.46 | 99.58 | 99.63 |
Appendix B
References
- Shi, Y. Exacerbating coastal hazards and defensive countermeasures in China. J. Nat. Disasters 1994, 3, 3–15. [Google Scholar]
- Zhu, X. Remote sensing monitoring of coastline change in Pearl River Estuary. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001.
- Wali, M.K. Practices and Problems of Land Reclamation in Western North America; University of North Dakota Press: Grand Forks, ND, USA, 1975. [Google Scholar]
- Suzuki, T. Economic and geographic backgrounds of land reclamation in Japanese ports. Mar. Pollut. Bull. 2003, 47, 226–229. [Google Scholar] [CrossRef]
- Breber, P.; Povilanskas, R.; Armaitienė, A. Recent evolution of fishery and land reclamation in curonian and lesina lagoons. Hydrobiologia 2008, 611, 105–114. [Google Scholar] [CrossRef]
- Hoeksema, R.J. Three stages in the history of land reclamation in the Netherlands. Irrig. Drain. 2007. [Google Scholar] [CrossRef]
- De Mulder, E.; Van Bruchem, A.; Claessen, F.; Hannink, G.; Hulsbergen, J.; Satijn, H. Environmental impact assessment on land reclamation projects in the Netherlands: A case history. Eng. Geol. 1994, 37, 15–23. [Google Scholar] [CrossRef]
- Bi, X.; Liu, F.; Pan, X. Coastal projects in China: From reclamation to restoration. Environ. Sci. Technol. 2012, 46, 4691–4692. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.D.; Wang, X.H.; Bao, X.W. Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qingdao, China. Estuarine Coast. Shelf Sci. 2014, 151, 285–294. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse. Prob. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Feng, G.C.; Li, Z.W.; Xu, B.; Shan, X.J.; Zhang, L.; Zhu, J.J. Coseismic deformation of the 2015 MW 6.4 Pishan, China, earthquake, estimated from Sentinel1 and ALOS2 data. Seismol. Res. Lett. 2016. [Google Scholar] [CrossRef]
- Feng, G.C.; Li, Z.W.; Shan, X.J. Geodetic model of the April 25, 2015 MW 7.8 Gorkha Nepal earthquake and MW 7.3 aftershock estimated from InSAR and GPS data. Geophys. J. Int. 2015, 203, 896–900. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Shan, X.; Xu, B.; Du, Y. Source parameters of the 2014 mw 6.1 south Napa earthquake estimated from the Sentinel 1a, Cosmo-skymed and GPS data. Tectonophysics 2015, 605, 139–146. [Google Scholar]
- Lu, Z.; Dzurisin, D.; Biggs, J.; Wicks, C.; McNutt, S. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J. Geophys. Res. Solid Earth 2010. [Google Scholar] [CrossRef]
- Lu, Z.; Masterlark, T.; Dzurisin, D. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. J. Geophys. Res. Solid Earth 2005. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal INSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, G.; Li, Z.; Zhang, G.; Lin, H.; Yu, B.; Wang, X. A hierarchical approach to persistent scatterer network construction and deformation time series estimation. Remote Sens. 2015, 7, 211. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PsInSAR analysis in the pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhao, R.; Hu, J.; Wen, L.X.; Feng, G.C.; Zhang, Z.Y.; Wang, Q.J. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Feng, G.; Hu, J.; Wang, C.; Ding, X.; Zhu, J. Correcting atmospheric effects on InSAR with meris water vapour data and elevation-dependent interpolation model. Geophys. J. Int. 2012, 189, 898–910. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Huang, C.; Zou, Z.; Chen, Y. Atmospheric effects on repeat-pass InSAR measurements over Shanghai region. J. Atmos. Sol. Terr. Phys. 2007, 69, 1344–1356. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.; Cross, P.; Preusker, R. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 2009, 30, 3343–3363. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.; Cross, P. Integration of INSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 BAM (Iran) earthquake. IEEE Geosci. Remote Sens. Lett. 2009, 47, 3220–3230. [Google Scholar]
- Jiang, L.; Lin, H. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong. Eng. Geol. 2010, 110, 77–92. [Google Scholar] [CrossRef]
- Cianflone, G.; Tolomei, C.; Brunori, C.; Dominici, R. InSAR time series analysis of natural and anthropogenic coastal plain subsidence: The case of Sibari (Southern Italy). Remote Sens. 2015, 7, 15812. [Google Scholar] [CrossRef] [Green Version]
- Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Wegmuller, U.; Rizzetto, F. Mapping regional land displacements in the venice coastland by an integrated monitoring system. Remote Sens. Environ. 2005, 98, 403–413. [Google Scholar] [CrossRef]
- Pfeffer, J.; Allemand, P. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet. Sci. Lett. 2016, 439, 39–47. [Google Scholar] [CrossRef]
- Han, X.; Long, J.; Li, J.; Chu, F.; Zhang, P.; Xu, D.; Yang, H. Research progress on the vulnerability of the Pearl River Delta. Trop. Geogr. 2010, 1, 002. [Google Scholar]
- Zhang, H.M.; Xu, Y.S.; Zeng, Q.L. Deformation behavior of shenzhen soft clay and post-construction settlement. Chin. J. Geotech. Eng. 2002, 24, 509–514, (In Chinese with English Abstract). [Google Scholar]
- Wang, H.; Wright, T.J.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Peng, J.; Liu, Z.; Wu, J. Assessment of loss of ecosystem service value under sea-level rise: A case study of Shekou Peninsula in Shenzhen. Prog. Geogr. 2009, 28, 417–423. [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SQUEESAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, J.; Liu, X.; Ren, P. Ground deformation monitoring of shenzhen metro area with interferometric point target analysis. In Proceedings of the IEEE 2012 20th International Conference on Geoinformatics, Hong Kong, 15–17 June 2012; pp. 1–5.
- Du, W. Reaseach on the Regulation of Soft Clay Foundation in Shenzhen; China University of Geosciences: Wuhan, China, 2007. [Google Scholar]
- Chen, W.-G.; Zhao, H.-M.; Li, F.-G. Fault activities and their influence upon geologic environment in Shenzhen city. Trop. Geogr. 2001, 21, 45–60. [Google Scholar]
- Jia, J.; Sun, J.; Zhan, W.; Yi, S. The current situation and problem of geological environment in Shenzhen city. J. Eng. Geol. 2006, 14, 33–37. [Google Scholar]
- Yeh, A.G.O.; Li, X. An integrated remote sensing and GIS approach in the monitoring and evaluation of rapid urban growth for sustainable development in the Pearl River Delta, China. Int. Plan. Stud. 1997, 2, 193–210. [Google Scholar] [CrossRef]
- Seto, K.C.; Woodcock, C.; Song, C.; Huang, X.; Lu, J.; Kaufmann, R. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sens. 2002, 23, 1985–2004. [Google Scholar] [CrossRef]
- Li, X.; Damen, M.C. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. J. Mar. Syst. 2010, 82, S54–S61. [Google Scholar] [CrossRef]
- Shenzhen Bureau of Statistics. Statistical Review of Shenzhen, 2007; China Statistics Press: Beijing, China, 2007; Volume 17, pp. 107–124. [Google Scholar]
- Jiang, M.; Ding, X.; Li, Z.; Tian, X.; Wang, C.; Zhu, W. InSAR coherence estimation for small data sets and its impact on temporal decorrelation extraction. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6584–6596. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000.
- Hooper, A.J. Persistent Scatter Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Li, Z. Hybrid approach for unbiased coherence estimation for multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2459–2473. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 4362–4364.
- Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vision 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Xu, B.; Yin, H.; Zhu, J.; Wang, C. InSAR interferogram filtering based on SUSAN and its improved algorithm. J Geod. Geodyn. 2010, 30, 68–73. [Google Scholar]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Doornbos, E.; Scharroo, R. Improved ERS and Envisat precise orbit determination. In Proceedings of the Envisat & ERS Symposium, Salzburg, Austria, September 2004; pp. 6–10.
- Xu, B.; Li, Z.-W.; Wang, Q.-J.; Jiang, M.; Zhu, J.-J.; Ding, X.-L. A refined strategy for removing composite errors of SAR interferogram. IEEE Geosci. Remote Sens. Lett. 2014, 11, 143–147. [Google Scholar] [CrossRef]
- Plant, G.W.; Covil, C.S.; Hughes, R.A. Site Preparation for the New Hong Kong International Airport—The Design, Construction and Performance of the Airport Platform; Thomas Telford: London, UK, 1998. [Google Scholar]
- Gernhardt, S. High Precision 3D Localization and Motion Analysis of Persistent Scatterers Using Meter-Resolution Radar Satellite Data. Ph.D. Thesis, Technische Universität München, München, Germany, 2011. [Google Scholar]
- Ge, L.; Ng, A.H.M.; Li, X.; Abidin, H.Z.; Gumilar, I. Land subsidence characteristics of Bandung Basin as revealed by envisat ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
- Porter, T.; Duff, T. Compositing digital images. In ACM SIGGRAPH Computer Graphics; ACM: New York, NY, USA, 1984; pp. 253–259. [Google Scholar]
- Le Cozannet, G.; Raucoules, D.; Wöppelmann, G.; Garcin, M.; Da Sylva, S.; Meyssignac, B.; Gravelle, M.; Lavigne, F. Vertical ground motion and historical sea-level records in Dakar (Senegal). Environ. Res. Lett. 2015, 10, 084016. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.-P.; Xie, Q.; Sun, Z.-X.; Chen, J. Status of seawater intrusion into coastal area of Shenzhen. Mar. Environ. Sci. 2011, 30, 541–545. [Google Scholar]
- Huang, Z.; Zong, Y.; Zhang, W. Coastal inundation due to sea level rise in the Pearl River Delta, China. Nat. Hazard. 2004, 33, 247–264. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Nicholls, R.J.; Sachooda, R.; Michele, C.; James, A.; Buckley, E.N. Technological options for adaptation to climate change in coastal zones. J. Coast. Res. 2001, 17, 531–543. [Google Scholar]
Orbit Type | Track | No. of SLC Images | No. of Pairs | Temporal Span |
---|---|---|---|---|
Ascending | 025 | 31 | 69 | 28 February 2007–15 September 2010 |
Descending | 175 | 28 | 65 | 24 June 2007–22 August 2010 |
Region | Elevation 1 H (m) | Sea level Rise v1 (mm/year) | Subsidence Rate2 v2 (mm/year) | Elapsed Time 3 Estimated T (year) |
---|---|---|---|---|
Shenzhen Airport | 1.5 | 2.5 | −10.7 | 114 |
Bao’an Center | 1.8 | 2.5 | −12.4 | 121 |
Qianhai Bay | 1.8 | 2.5 | −5.5 | 225 |
Shenzhen Bay | 2.0 | 2.5 | −3.9 | 313 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Feng, G.; Li, Z.; Wang, Q.; Wang, C.; Xie, R. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sens. 2016, 8, 652. https://doi.org/10.3390/rs8080652
Xu B, Feng G, Li Z, Wang Q, Wang C, Xie R. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sensing. 2016; 8(8):652. https://doi.org/10.3390/rs8080652
Chicago/Turabian StyleXu, Bing, Guangcai Feng, Zhiwei Li, Qijie Wang, Changcheng Wang, and Rongan Xie. 2016. "Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China" Remote Sensing 8, no. 8: 652. https://doi.org/10.3390/rs8080652
APA StyleXu, B., Feng, G., Li, Z., Wang, Q., Wang, C., & Xie, R. (2016). Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sensing, 8(8), 652. https://doi.org/10.3390/rs8080652