Mesozoic-Cenozoic Exhumation History of the Bogda Range, Eastern Tianshan: Insights from Apatite Fission Track Thermochronology
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
3.1. Sample Descriptions
3.2. Analytical Methods
4. Results and Thermal History
4.1. Apatite Fission Track Ages
4.2. Thermal History Modeling
5. Interpretations and Discussion
5.1. Late Triassic
5.2. Late Cretaceous
5.3. Late Miocene
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Allen, M.B.; Windley, B.F.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Gao, J.; Li, M.; Xiao, X.; Tang, Y.; He, G. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics 1998, 287, 213–231. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.; Laurent-Charvet, S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Epis. J. Int. Geosci. Seoul Natl. Univ. 2007, 30, 162–186. [Google Scholar]
- Charvet, J.; Shu, L.; Laurent-Charvet, S.; Wang, B.; Faure, M.; Cluzel, D.; Chen, Y.; De Jong, K. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci. China Earth Sci. 2011, 54, 166–184. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Windley, B.F.; Allen, M.B.; Han, C.M. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Tan, Z.; Xiao, W.J.; Mao, Q.G.; Wang, H.; Sang, M.; Li, R.; Gao, L.M.; Guo, Y.H.; Gan, J.M.; Liu, Y.H.; et al. Final closure of the Paleo Asian Ocean basin in the early Triassic. Commun. Earth Environ. 2022, 3, 259. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Dumitru, T.A.; Graham, S.A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology 1994, 22, 487–490. [Google Scholar] [CrossRef]
- Wang, Y.N.; Cai, K.D.; Sun, M.; Xiao, W.J.; Grave, J.D.; Wan, B.; Bao, Z.H. Tracking the multistage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating: Implication for the preservation of epithermal deposits in the ancient orogenic belt. Ore Geol. Rev. 2018, 100, 111–132. [Google Scholar] [CrossRef]
- Nachtergaele, S.; De Pelsmaeker, E.; Glorie, E.; Zhimulev, F.; Jolivet, M.; Danisík, M.; Buslov, M.M.; De Grave, J. Mesozoic-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology. Geosci. Front. 2018, 9, 1495–1514. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Liu, J.Q.; Yin, J.Y.; Sun, J.B. Thermochronological insights into the intracontinental orogeny of the Chinese western Tianshan orogen. J. Asian Earth Sci. 2020, 194, 103927. [Google Scholar] [CrossRef]
- Zhu, W.B.; Shu, L.S.; Wan, J.L.; Sun, Y.; Wang, F.; Zhao, Z.Y. Fission-track evidence for the exhumation history of Bogda-Harlik Mountains, Xinjiang since the Cretaceous. Acta Geol. Sin. 2006, 80, 16–22, (In Chinese with English abstract). [Google Scholar]
- Wang, X.W.; Wang, X.W.; Ma, Y.S. Differential exhumation history of Bogda Mountain, Xinjiang, Northwestern China since the Late Mesozoic. Acta Geol. Sin. 2007, 11, 1507–1517, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.X.; Li, T.; Zhang, J.; Liu, Y.Q.; Ma, Z.J. The uplift progresses of the Bogda Moutain and its significance. Sci. China (Ser. D Geosci.) 2008, 38, 316–326, (In Chinese with English abstract). [Google Scholar]
- Tang, W.H.; Zhang, Z.C.; Li, J.F.; Li, K.; Luo, Z.W.; Chen, Y. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China: Evidence from apatite fission track analysis. Geosci. Front. 2015, 6, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Nie, F.J.; Su, X.B.; Xia, F.; Li, M.G.; Yan, Z.B.; Zhang, C.Y.; Feng, Z.B. Relationships between Mesozoic-Cenozoic denudation in the Eastern Tian Shan and uranium mineralization in the Turpan-Hami basin, NW China: Constraints from apatite fission track study. Ore Geol. Rev. 2020, 127, 103820. [Google Scholar]
- He, Z.Y.; Glorie, S.; Wang, F.J.; Zhu, W.B.; Fonseca, A.; Su, W.B.; Zhong, L.L.; Zhu, X.; De Grave, J. A re-evaluation of the Meso-Cenozoic thermo-tectonic evolution of Bogda Shan (Tian Shan, NW China) based on new basement and detrital apatite fission track thermochronology. Int. Geol. Rev. 2022. [Google Scholar] [CrossRef]
- He, Z.Y.; Wang, B.; Glorie, S.; Su, W.B.; Ni, X.H.; Jepson, G.; Liu, J.S.; Zhong, L.L.; Gillespie, J.; De Grave, J. Mesozoic building of the Eastern Tianshan and East Junggar (NW China) revealed by low-temperature thermochronology. Gondwana Res. 2022, 103, 37–53. [Google Scholar] [CrossRef]
- Gillespie, J.; Glorie, S.; Jepson, G.; Zhang, Z.Y.; Xiao, W.J.; Danišík, M.; Collins, A.S. Differential exhumation and crustal tilting in the easternmost Tianshan (Xinjiang, China), revealed by low-temperature thermochronology. Tectonics 2017, 36, 2142–2158. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.C.; Kapp, P.; Shen, T.Y.; Zhang, P.; Zhu, C.Y.; Cao, K. Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, northwestern China. Tectonophysics 2020, 796, 228647. [Google Scholar] [CrossRef]
- Cunningham, D.; Owen, L.A.; Snee, L.; Li, J. Structural framework of a major intracontinental orogenic termination zone: The easternmost Tien Shan, China. J. Geol. Soc. 2003, 160, 575–590. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.; Jolivet, M.; Barrier, L.; Laborde, A.; Li, H.B.; Dauteuil, O. Planation surfaces of the Tian Shan Range (Central Asia): Insight on several 100 million years of topographic evolution. J. Asian Earth Sci. 2019, 177, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.; Wu, F.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar]
- Ji, H.J.; Tao, H.F.; Wang, Q.; Qiu, Z.; Ma, D.X.; Qiu, J.L.; Liao, P. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology. J. Asian Earth Sci. 2018, 153, 57–74. [Google Scholar] [CrossRef]
- Li, J.Y. Late Neoproterozoic and Paleozoic tetonic framework and evolution of Eastern Xinjiang, NW China. Geol. Rev. 2004, 50, 304–322, (In Chinese with English abstract). [Google Scholar]
- Wartes, M.A.; Carroll, A.R.; Greene, T.J.; Cheng, K.; Ting, H. Permian Lacustrine Deposits Of Northwest China. In Gierlowski-Kordesch, E., and Kelts, K., eds., Lake Basins through Space and Time. Am. Assoc. Pet. Geol. Stud. Geol. 2000, 46, 123–132. [Google Scholar]
- Greene, T.J.; Carroll, A.R.; Wartes, M.; Graham, S.A.; Wooden, J.L. Integrated Provenance Analysis of a Complex Orogenic Terrane: Mesozoic Uplift of the Bogda Shan and Inception of the Turpan-Hami Basin, NW China. J. Sediment. Res. 2005, 75, 251–267. [Google Scholar] [CrossRef]
- Chen, K.; Lin, W.; Wang, Q.C. The Bogeda Shan uplifting: Evidence from multiple phases of deformation. J. Asian Earth Sci. 2015, 99, 1–12. [Google Scholar] [CrossRef]
- Yang, W.; Jolivet, M.; Dupont-Nivet, G.; Guo, Z.J.; Zhang, Z.C.; Wu, C.D. Source to sink relations between the Tian Shan and Junggar Basin (northwest China) from Late Palaeozoic to Quaternary: Evidence from detrital U-Pb zircon geochronology. Basin Res. 2012, 25, 219–240. [Google Scholar] [CrossRef]
- Gu, L.X.; Yu, C.S.; Li, H.Y.; Xiao, X.J.; Yan, Z.F. Rb-Sr Isotope Age of the Shangdaheyan Intrusion in the Bogda Orogenic Belt and its Geological Implications. Bull. Mineral. Petrol. Geochem. 1999, 19, 19–21, (In Chinese with English abstract). [Google Scholar]
- Zhang, X.B.; Chai, F.M.; Chen, C.; Quan, H.Y.; Gong, X.P. Geochronology, geochemistry and tectonic implications of Late Carboniferous Daheyan intrusions from the Bogda Mountains, eastern Tianshan. Geol. Mag. 2019, 157, 289–306. [Google Scholar] [CrossRef]
- Hurford, A.J.; Green, P.F. The zeta-age calibration of fission-track dating. Isot. Geosci. 1983, 1, 285–317. [Google Scholar] [CrossRef]
- Ketcham, R.A. Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar] [CrossRef]
- Sobel, E.R.; Seward, D. Influence of etching conditions on apatite fission-track etch pit diameter. Chem. Geol. 2010, 271, 59–69. [Google Scholar] [CrossRef]
- Hurford, A.J. Standardization of fission track dating calibration: Recommendation by the fission track working group of the I.U.G.S. Subcommission on Geochronology. Chem. Geol. 1990, 80, 171–178. [Google Scholar] [CrossRef]
- Naeser, C.W.; Cebula, G.T. Recollection of Fish Canyon Tuff for fission-track standardization. Nucl. Tracks Radiat. Meas. 1985, 10, 393. [Google Scholar] [CrossRef]
- Vermeesch, P. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiat. Meas. 2009, 44, 409–410. Available online: http://www.ucl.ac.uk/~ucfbpve/radialplotter/ (accessed on 16 June 2021). [CrossRef]
- Galbraith, R.F. On statistical estimation in fission track dating. J. Int. Assoc. Math. Geol. 1981, 13, 471–478. [Google Scholar] [CrossRef]
- Donelick, R.A.; Ketcham, R.A.; Carlson, W.D. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am. Mineral. 1999, 84, 1224–1234. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission track annealing in apatite. Am. Mineral. 2007, 92, 789–798. [Google Scholar] [CrossRef]
- Green, P.E.; Duddy, I.R.; Gleadow, A.I.W.; Tingate, P.R. Fission track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nucl. Tracks 1985, 10, 323–328. [Google Scholar] [CrossRef]
- Vermeesch, P. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 2004, 224, 441–451. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Balestrieri, M.L.; Zattin, M. Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet. Sci. Lett. 2009, 284, 504–515. [Google Scholar] [CrossRef]
- Barbarand, J.; Hurford, T.; Carter, A. Variation in apatite fission-track length measurement: Implications for thermal history modelling. Chem. Geol. 2003, 198, 77–106. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am. Mineral. 1999, 84, 1235–1255. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Donelick, M.B. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Am. Mineral. 2003, 88, 929. [Google Scholar]
- Wang, X.T. Stratigraphic Framework and Sedimentary Evolution of the Permian-Jurassic Strata in the Surrounding Area of the Bogda Mountains. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2017; pp. 1–119, (In Chinese with English Abstract). [Google Scholar]
- Lu, M.A. Multistage Evolution of the Basin-and-Range Structure of the Eastern Section of the Tienshan Mountains. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2007; pp. 1–393, (In Chinese with English Abstract). [Google Scholar]
- Guo, W. Intraplate Tectonics of Bogda Mountain in Xingjiang and Its Adjacent Plates. Ph.D. Thesis, Northwest University, Xi’an, China, 2008; pp. 1–163, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.P. Structural deformation and Structural evolution characteristics in the northern of Bogda Mountains. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019; pp. 1–70, (In Chinese with English Abstract). [Google Scholar]
- Liang, X.X.; Chen, S.; Chen, S.P.; Yuan, H.W.; Liang, Y.Y.; Song, X.G. Multi-stage deformation of Sangezhuang Uplift in the western margin of Bogda Mountain and its response to regional tectonic evolution. Sci. Technol. Eng. 2020, 20, 11455–11462, (In Chinese with English Abstract). [Google Scholar]
- Gong, L.; Barry, P.K.; Zhang, Z.Y.; Xiao, B.; Wu, L.; Chen, H.Y. Exhumation and Preservation of Paleozoic Porphyry Cu Deposits: Insights from the Yandong Deposit, Southern Central Asian Orogenic Belt. Econ. Geol. 2021, 116, 607–628. [Google Scholar] [CrossRef]
- Jepson, G.; Glorie, S.; Konopelko, D.; Mirkamalov, R.; Danišík, M.; Collins, A.S. The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan. Gondwana Res. 2018, 64, 122–136. [Google Scholar] [CrossRef]
- Glorie, S.; Otasevic, A.; Gillespie, J.; Jepson, G.; Danišík, M.; Zhimulev, F.I.; Gurevich, D.; Zhang, Z.; Song, D.; Xiao, W.J. Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology. Geosci. Front. 2019, 10, 2153–2166. [Google Scholar] [CrossRef]
- De Grave, J.; Glorie, S.; Buslov, m.m.; Izmer, A.; Fournier-Carrie, A.; Batalev, V.Y.; Vanhaecke, F.; Elburg, M.; Van den haute, P. The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermochronometry and zircon U/Pb dating. Gondwana Res. 2011, 20, 745–763. [Google Scholar] [CrossRef]
- De Grave, J.; Glorie, S.; Buslov, M.M.; Stockli, D.F.; McWilliams, M.O.; Batalev, V.Y.; Van den haute, P. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res. 2013, 23, 998–1020. [Google Scholar] [CrossRef]
- Jepson, G.; Glorie, S.; Khudoley, A.K.; Malyshev, S.V.; Gillespie, J.; Glasmacher, U.A.; Carrapa, B.; Soloviev, A.V.; Collins, A.S. The Mesozoic exhumation history of the Karatau-Talas range, western Tian Shan, Kazakhstan-Kyrgyzstan. Tectonophysics 2021, 814, 228977. [Google Scholar] [CrossRef]
- He, Z.Y.; Wang, B.; Su, W.B.; Glorie, S.; Ni, X.H.; Liu, J.S.; Cai, D.X.; Zhong, L.L.; De Grave, J. Meso-Cenozoic thermo-tectonic evolution of the Yili block within the Central Asian Orogenic Belt (NW China): Insights from apatite fission track thermochronology. Tectonophysics 2022, 823, 229194. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Graham, S.A.; Carroll, A.R.; Sobel, E.R.; Mcknight, C.L.; Schulein, B.J.; Wang, Z.X. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol. Soc. Am. Bull. 1992, 104, 53–79. [Google Scholar] [CrossRef]
- Dumitru, T.A.; Zhou, D.; Chang, E.Z.; Graham, S.A. Uplift, exhumation, and deformation in the Chinese Tian Shan. In: Hendrix, M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Geol. Soc. Am. Mem. 2001, 194, 71–99. [Google Scholar]
- Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.G.; Wang, Q.C. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, 6019. [Google Scholar] [CrossRef] [Green Version]
- Choulet, F.; Chen, Y.; Cogne, J.P.; Rabillard, A.; Wang, B.; Lin, W.; Faure, M.; Cluzel, D. First triassic palaeomagnetic constraints from Junggar (NW China) and their implications for the Mesozoic tectonics in central Asia. J. Asian Earth Sci. 2013, 78, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, G.H.; Li, J.Y. U-Pb (SHRIMP) and 40 Ar/ 39 Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: A Triassic segment of the Altyn Tagh fault system. Geol. Soc. Am. Bull. 2010, 122, 487–505. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Z.L.; Yuan, F.; Zhang, Q.; Han, F.B.; Zhang, W.G.; Huo, H.L.; Li, J.L.; Zhao, T.Y.; Han, Q.; et al. Late Triassic dextral strike slip in the eastern segment of the shear zone on the northern margin of the Central Tianshan Mountains: Response to orogenic revival on the southwestern margin of the Central Asian orogenic belt. Xinjiang Geol. 2022, 40, 85–91. (In Chinese) [Google Scholar]
- Glorie, S.; De Grave, J.; Buslov, M.M.; Elburg, M.A.; Stockli, D.F.; Gerdes, A.; Van den Haute, P. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation. J. Asian Earth Sci. 2010, 38, 131–146. [Google Scholar] [CrossRef]
- Macaulay, E.A.; Sobel, E.R.; Mikolaichuk, A.; Kohn, B.; Stuart, F.M. Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan. Tectonics 2014, 33, 135–165. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Zhang, X.; Liao, Q.; Wang, W.; Tian, J.; Xuan, Z.Y. Significant Paleozoic tectonic events in the northern part of the East Tianshan Mountains, Xinjiang and their implications for the evolution of CAOB: New evidence from 1∶50000 geological survey of Banfanggou and Xiaoliugou sheets. Geol. China 2019, 46, 954–976, (In Chinese with English abstract). [Google Scholar]
- XBGMR (Xinjiang Bureau of Geology and Mineral Resources). 1965; Volume 1, 200000, Geological map, Urumqi sheet (K-45-IV).
- Zhang, K.J. Genesis of the Late Mesozoic Great Xing’an Range Large Igneous Province: A Mongol–Okhotsk slab window model. Int. Geol. Rev. 2014, 56, 1557–1583. [Google Scholar] [CrossRef]
- Zhang, K.J.; Yan, L.L.; Ji, C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: A tale of the Okhotsk oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol–Okhotsk ocean? Earth-Sci. Rev. 2019, 198, 102941. [Google Scholar] [CrossRef]
- Fang, Y.N.; Wu, C.D.; Wang, Y.Z.; Hou, K.J.; Guo, Z.J. Topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins, Central Asia, from the Permian to the Neogene. Gondwana Res. 2019, 75, 47–67. [Google Scholar] [CrossRef]
- Guo, Z.J.; Zhang, Z.C.; Fang, S.H.; Fang, S.H.; Zhang, R. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains. Acta Geol. Sin. 2006, 80, 1–15, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.C.; Guo, Z.J.; Wu, C.D.; Fang, S.H. Thermal history of the Jurassic Strata in the Northern Tianshan and its geological significance, revealed by apatite fission track and vitrinite-reflectance analysis. Acta Petrol. Sin. 2007, 23, 1638–1695, (In Chinese with English abstract). [Google Scholar]
- Zhu, W.B.; Wan, J.L.; Shu, L.S.; Zhang, Z.Y.; Su, J.B.; Sun, Y.; Guo, J.C.; Zhang, X.Y. Late Mesozoic Thermotectonic Evolution of the Jueluotage Range, Eastern Xinjiang, Northwest China: Evidence from Apatite Fission Track Data. Acta Geol. Sin. (Engl. Ed.) 2008, 82, 348–357. [Google Scholar]
- Zhao, X.D.; Zhang, H.P.; Lü, H.H.; Lü, Y.Y.; Li, X.M.; Liu, K.; Zhang, J.W.; Xiong, J.G. Signatures of tectonic-climatic interaction during the Late Cenozoic orogenesis along the northern Chinese Tian Shan. Basin Res. 2021, 33, 291–311. [Google Scholar] [CrossRef]
- Sun, J.M.; Zhu, R.X.; Bowler, J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet. Sci. Lett. 2004, 219, 239–253. [Google Scholar] [CrossRef]
- Tang, Z.H.; Huang, B.C.; Dong, X.X.; Ji, J.L.; Ding, Z.L. Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan. Geochem. Geophys. Geosystems 2012, 13, Q03022. [Google Scholar]
- Sun, J.M.; Zhang, Z.Q. Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics 2009, 463, 60–68. [Google Scholar] [CrossRef]
- Yin, A.; Nie, S.; Craig, P.; Harrison, T.M. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 1998, 17, 1–27. [Google Scholar] [CrossRef]
- Wang, X.; Suppe, J.; Guan, S.W.; Hubert-Ferrari, A.; Gonzalez-Mieres, R.; Jia, C.Z. Cenozoic Structure and Tectonic Evolution of the Kuqa Fold Belt, Southern Tianshan, China. Am. Assoc. Pet. Geol. 2011, 94, 215–243. [Google Scholar]
- Yu, S.; Chen, W.; Evans, N.J.; McInnes, B.I.A.; Yin, J.Y.; Sun, J.B.; Li, J.; Zhang, B. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry. Tectonophysics 2014, 630, 166–182. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Z.Y.; Malusà, M.G.; Chew, D.; Xiang, D.F.; Wu, L.; Wang, N.; Xiao, W.J. Late Cenozoic topographic growth of the South Tianshan Mountain Range: Insights from detrital apatite fission-track ages, northern Tarim Basin margin, NW China. J. Asian Earth Sci. 2022, 234, 105277. [Google Scholar] [CrossRef]
- Sun, Y.B.; Yan, Y.; Nie, J.S.; Li, G.J.; Shi, Z.G.; Qiang, X.K.; Chang, H.; An, Z.S. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth-Sci. Rev. 2020, 200, 102963. [Google Scholar] [CrossRef]
- Käßner, A.; Ratschbacher, L.; Jonckheere, R.; Enkelmann, E.; Khan, J.; Sonntag, B.L.; Gloaguen, R.; Gadoev, M.; Oimahmadov, I. Cenozoic intracontinental deformation and exhumation at the northwestern tip of the India-Asia collision-southwestern Tian Shan, Tajikistan, and Kyrgyzstan. Tectonics 2016, 35, 2171–2194. [Google Scholar] [CrossRef]
- Xiang, D.F.; Zhang, Z.Y.; Xiao, W.J.; Zhu, W.B.; Zheng, D.W.; Li, G.W.; Zheng, B.H.; Song, D.F.; Han, C.M.; Pang, J.Z. Episodic Mesozoic-Cenozoic denudation of Chinese Tianshan: Evid-ence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China. J. Asian Earth Sci. 2018, 175, 199–212. [Google Scholar] [CrossRef]
- Glorie, S.; De Grave, J. Exhuming the Mesozoic-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: A review based on low-temperature thermochronology. Geosci. Front. 2016, 7, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.Y.; Sun, J.M.; Lü, L.X. Late Cenozoic tectono-geomorphologic evolution of the northern Tian Shan mountain range: Insight from U-Pb ages of detrital zircon grains from the Upper Oligocene-Quaternary sediments of the southern Junggar basin. J. Asian Earth Sci. 2020, 194, 104286. [Google Scholar] [CrossRef]
- Qin, X.; Chen, X.H.; Shao, Z.G.; Zhang, Y.P.; Wang, Y.C.; Li, B. Cenozoic multi-phase intracontinental deformation of the Tianshan Range (NW China): Constraints from detrital zircon provenance and syn-tectonic sedimentation of the Kuqa Depression. J. Asian Earth Sci. 2022, 232, 105183. [Google Scholar] [CrossRef]
Sample | Lithology | Elevation (m) | Latitude (°N) | Longitude (°E) | Depositional or Crystallization Ages |
---|---|---|---|---|---|
BYH1 | Pebbly sandstone | 1725 | 43°57′44.80″ | 88°31′25.80″ | Late Carboniferous |
BYH2 | Pebbly sandstone | 1473 | 43°59′08.50″ | 88°31′36.50″ | Early Permian |
BYH13 | Tuffaceous sandstone | 1007 | 44°03′29.51″ | 88°31′29.55″ | Late Jurassic |
BYH18 | Tuffaceous sandstone | 975 | 44°04′58.20″ | 88°31′35.09″ | Early Triassic |
DHY1 | Granite | 1867 | 43°24′43.44″ | 88°51′53.94″ | Late Carboniferous |
DHY2 | Granite | 1881 | 43°24′46.13″ | 88°51′59.90″ | Late Carboniferous |
DHY3 | Granite | 1826 | 43°23′47.80″ | 88°51′16.50″ | Late Carboniferous |
DHY4 | Granite | 1850 | 43°23′43.44″ | 88°51′20.37″ | Late Carboniferous |
DHY5 | Granite | 1926 | 43°23′47.77″ | 88°51′31.96″ | Late Carboniferous |
DHY6 | Granite | 1889 | 43°24′11.43″ | 88°51′50.15″ | Late Carboniferous |
Sample | Number of Grains | ρs(×10 5cm−2) (Ns) | ρi(×10 5cm−2) (Ni) | ρd(×10 5cm−2) (Nd) | 238U (ppm) | P(χ2) (%) | Central Age (± 1σ) (Ma) | Dpar (μm) | L (μm ± 1σ) (n) |
---|---|---|---|---|---|---|---|---|---|
BYH2 | 21 | 5.08 (290) | 2.82 (161) | 10.7 (17142) | 3.78 | 100 | 251.0 ± 26.0 | 2.67 | 12.81 ± 1.24 (44) |
BYH13 | 34 | 2.94 (421) | 8.83 (1263) | 12.2 (17142) | 9.63 | 0 | 61.3 ± 7.7 | 2.18 | |
BYH18 | 36 | 8.64 (456) | 12.50 (660) | 11.5 (17192) | 18.11 | 70 | 104.7 ± 7.1 | 3.02 | 12.75 ± 1.47 (43) |
DHY1 | 32 | 9.69 (766) | 10.24 (810) | 10.8 (17142) | 12.25 | 8 | 135.5 ± 8.8 | 2.13 | 12.82 ± 1.37 (68) |
DHY2 | 19 | 7.72 (321) | 10.30 (428) | 12.5 (17192) | 10.50 | 9 | 128.0 ± 12.0 | 2.10 | 12.69 ± 1.50 (100) |
DHY4 | 19 | 4.22 (266) | 4.47 (282) | 11.5 (17142) | 5.18 | 66 | 143.0 ± 13.0 | 2.13 | |
DHY6 | 21 | 5.01 (292) | 6.73 (392) | 11.0 (17192) | 9.24 | 39 | 108.0 ± 9.0 | 1.83 | 11.90 ± 1.76 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Li, J.; Liu, X.; Wang, Y.; Liang, W.; Yuan, S. Mesozoic-Cenozoic Exhumation History of the Bogda Range, Eastern Tianshan: Insights from Apatite Fission Track Thermochronology. Minerals 2023, 13, 71. https://doi.org/10.3390/min13010071
Song S, Li J, Liu X, Wang Y, Liang W, Yuan S. Mesozoic-Cenozoic Exhumation History of the Bogda Range, Eastern Tianshan: Insights from Apatite Fission Track Thermochronology. Minerals. 2023; 13(1):71. https://doi.org/10.3390/min13010071
Chicago/Turabian StyleSong, Shida, Jiangang Li, Xiaoyan Liu, Yadong Wang, Wentian Liang, and Sihua Yuan. 2023. "Mesozoic-Cenozoic Exhumation History of the Bogda Range, Eastern Tianshan: Insights from Apatite Fission Track Thermochronology" Minerals 13, no. 1: 71. https://doi.org/10.3390/min13010071
APA StyleSong, S., Li, J., Liu, X., Wang, Y., Liang, W., & Yuan, S. (2023). Mesozoic-Cenozoic Exhumation History of the Bogda Range, Eastern Tianshan: Insights from Apatite Fission Track Thermochronology. Minerals, 13(1), 71. https://doi.org/10.3390/min13010071