Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources †
Abstract
:1. Introduction
2. Materials and Methods
3. Ultrasound-Assisted Extraction (UAE) in Bioactive Compound Extraction
4. Floral Sources as a Reservoir of Bioactive Compounds
5. Factors Influencing UAE Efficiency: Operational Variables, Matrix Effect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Zheng, J.; Meenu, M.; Xu, B. A Systematic Investigation on Free Phenolic Acids and Flavonoids Profiles of Commonly Consumed Edible Flowers in China. J. Pharm. Biomed. Anal. 2019, 172, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Aurora-Vigo, E.F.; Villagrán, Z.; Rodríguez-Lafitte, E.; Ruvalcaba-Gómez, J.M.; Solano-Cornejo, M.Á.; Zamora-Gasga, V.M.; Montalvo-González, E.; Gómez-Rodríguez, H.; Aceves-Aldrete, C.E.; et al. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023, 28, 7752. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lin, L.; Chau, F.T. Ultrasound-Assisted Extraction of Ginseng Saponins from Ginseng Roots and Cultured Ginseng Cells. Ultrason. Sonochem. 2001, 8, 347–352. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-Assisted Extraction and Modification of Plant-Based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Aung, T.; Kim, S.J.; Eun, J.B. A Hybrid RSM-ANN-GA Approach on Optimisation of Extraction Conditions for Bioactive Component-Rich Laver (Porphyra Dentata) Extract. Food Chem. 2022, 366, 130689. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Domokos, E.; Coşarcă, S.; Miklos, A.; Imre, S.; Domokos, J.; Dehelean, C.A. Study of the Ultrasound-Assisted Extraction of Polyphenols from Beech (Fagus Sylvatica L.) Bark. BioResources 2018, 13, 2247–2267. [Google Scholar] [CrossRef]
- Salacheep, S.; Kasemsiri, P.; Pongsa, U.; Okhawilai, M.; Chindaprasirt, P.; Hiziroglu, S. Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Bioactive Compounds from Butterfly Pea Petals Using Taguchi Method and Grey Relational Analysis. J. Food Sci. Technol. 2020, 57, 3720–3730. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry—A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Xie, J.H.; Shen, M.Y.; Xie, M.Y.; Nie, S.P.; Chen, Y.; Li, C.; Huang, D.F.; Wang, Y.X. Ultrasonic-Assisted Extraction, Antimicrobial and Antioxidant Activities of Cyclocarya Paliurus (Batal.) Iljinskaja Polysaccharides. Carbohydr. Polym. 2012, 89, 177–184. [Google Scholar] [CrossRef]
- Navarro, P.; Etxebarria, N.; Arana, G. Development of a Focused Ultrasonic-Assisted Extraction of Polycyclic Aromatic Hydrocarbons in Marine Sediment and Mussel Samples. Anal. Chim. Acta 2009, 648, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Dong, R.; Peng, J.; Tian, X.; Fang, D.; Xu, S. Comparison of the Effect of Extraction Methods on Waste Cotton (Gossypium Hirsutum L.) Flowers: Metabolic Profile, Bioactive Components, Antioxidant, and α-Amylase Inhibition. J. Sci. Food Agric. 2023, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.A.; Jokić, S.; Cikoš, A.M.; Banožić, M.; Jakovljević Kovač, M.; Fais, A.; Tuberoso, C.I.G. Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca Sellowiana (O.Berg) Burret) Flowers. Plants 2023, 12, 1461. [Google Scholar] [CrossRef]
- Xu, D.P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.N.; Li, H. Bin Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha Integerrima by Response Surface Methodology. Molecules 2016, 21, 18. [Google Scholar] [CrossRef]
- Roriz, C.L.; Xavier, V.; Heleno, S.A.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Morales, P.; Ferreira, I.C.F.R.; Barros, L. Chemical and Bioactive Features of Amaranthus Caudatus L. Flowers and Optimized Ultrasound-Assisted Extraction of Betalains. Foods 2021, 10, 779. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P.; Martin-Diana, A.B.; Barry-Ryan, C. Optimization of Ultrasound Assisted Extraction of Antioxidant Compounds from Marjoram (Origanum Majorana L.) Using Response Surface Methodology. Ultrason. Sonochem. 2012, 19, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Rosarina, D.; Narawangsa, D.R.; Chandra, N.S.R.; Sari, E.; Hermansyah, H. Optimization of Ultrasonic—Assisted Extraction (UAE) Method Using Natural Deep Eutectic Solvent (NADES) to Increase Curcuminoid Yield from Curcuma Longa L., Curcuma Xanthorrhiza, and Curcuma Mangga Val. Molecules 2022, 27, 6080. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Moya, M.; Méndez, G.; Villacís, M.; Rojas-Silva, P.; Corell, M.; Mapelli-Brahm, P.; Vicario, I.M.; Meléndez-Martínez, A.J. Exploring Plants with Flowers: From Therapeutic Nutritional Benefits to Innovative Sustainable Uses. Foods 2023, 12, 4066. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Chang, Y.Y.; Hsu, C.L.; Liu, C.W.; Lin, Y.I.L.; Lin, Y.U.H.; Liu, K.C.; Chen, Y.I.C. Antiobesity and Hypolipidemic Effects of Polyphenol-Rich Longan (Dimocarpus Longans Lour.) Flower Water Extract in Hypercaloric-Dietary Rats. J. Agric. Food Chem. 2010, 58, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.R.; Hu, R.D.; Lu, X.Y.; Ding, X.Y.; Huang, G.Y.; Duan, L.X.; Zhang, S.J. Polyphenols from the Flower of Hibiscus Syriacus Linn Ameliorate Neuroinflammation in LPS-Treated SH-SY5Y Cell. Biomed. Pharmacother. 2020, 130, 110517. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible Flowers: Emerging Components in the Diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Łysiak, G.P. Ornamental Flowers Grown in Human Surroundings as a Source of Anthocyanins with High Anti-Inflammatory Properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Spórna-Kucab, A.; Tekieli, A.; Grzegorczyk, A.; Świątek, Ł.; Rajtar, B.; Skalicka-Woźniak, K.; Starzak, K.; Nemzer, B.; Pietrzkowski, Z.; Wybraniec, S. Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca Grandiflora Hook. Extracts. Antioxidants 2022, 11, 1654. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Schini-Kerth, V.B.; Rimbach, G. Betanin—A Food Colorant with Biological Activity. Mol. Nutr. Food Res. 2015, 59, 36–47. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic Application of Betalains: A Review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- Göttingerová, M.; Kumšta, M.; Nečas, T. Health-Benefitting Biologically Active Substances in Edible Apricot Flowers. HortScience 2020, 55, 1372–1377. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. Borage, Camellia, Centaurea and Pansies: Nutritional, Fatty Acids, Free Sugars, Vitamin E, Carotenoids and Organic Acids Characterization. Food Res. Int. 2020, 132, 109070. [Google Scholar] [CrossRef]
- Clarke, M.W.; Burnett, J.R.; Croft, K.D. Vitamin E in Human Health and Disease. Crit. Rev. Clin. Lab. Sci. 2008, 45, 417–450. [Google Scholar] [CrossRef]
- Nachbar, F.; Korting, H.C. The Role of Vitamin E in Normal and Damaged Skin. J. Mol. Med. 1995, 73, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Apul, S.; Sisilia, F.Y. The Utilization of Red Seed Guava and Rosella Flower as Sources of Vitamin C. IOP Conf. Ser. Earth Environ. Sci. 2018, 205, 012042. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Benítez, A.; Corell, M.; Hernanz, D.; Mapelli-Brahm, P.; Stinco, C.; Coyago-Cruz, E. Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers. Foods 2021, 10, 2625. [Google Scholar] [CrossRef]
- Sayeed, R.; Thakur, M.; Gani, A. Celosia Cristata Linn. Flowers as a New Source of Nutraceuticals- A Study on Nutritional Composition, Chemical Characterization and in-Vitro Antioxidant Capacity. Heliyon 2020, 6, e05792. [Google Scholar] [CrossRef]
- Bohlmann, J.; Keeling, C.I. Terpenoid Biomaterials. Plant J. 2008, 54, 656–669. [Google Scholar] [CrossRef]
- Jadaun, J.S.; Sangwan, N.S.; Narnoliya, L.K.; Singh, N.; Bansal, S.; Mishra, B.; Sangwan, R.S. Over-Expression of DXS Gene Enhances Terpenoidal Secondary Metabolite Accumulation in Rose-Scented Geranium and Withania Somnifera: Active Involvement of Plastid Isoprenogenic Pathway in Their Biosynthesis. Physiol. Plant. 2017, 159, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Takahashi, N.; Hirai, S.; Kawada, T. Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism. PPAR Res. 2010, 2010, 483958. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.J.J.; Piteral, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a Mevalonate Pathway in Escherichia Coli for Production of Terpenoids. Nat. Biotechnol. 2003, 21, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Donn, P.; Barciela, P.; Perez-Vazquez, A.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Bioactive Compounds of Verbascum Sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules 2023, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Selseleh, M.; Nejad Ebrahimi, S.; Aliahmadi, A.; Sonboli, A.; Mirjalili, M.H. Metabolic Profiling, Antioxidant, and Antibacterial Activity of Some Iranian Verbascum L. Species. Ind. Crops Prod. 2020, 153, 112609. [Google Scholar] [CrossRef]
- Degirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus Aurantium L. Flower. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Ferreira, S.L.C.; Novaes, C.G.; dos Santos, A.M.P.; Valasques, G.S.; da Mata Cerqueira, U.M.F.; dos Santos Alves, J.P. Simultaneous Optimization of Multiple Responses and Its Application in Analytical Chemistry—A Review. Talanta 2019, 194, 941–959. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Gan, R.Y.; Ge, Y.Y.; Zhang, D.; Corke, H. Ultrasonic Treatment Increases Extraction Rate of Common Bean (Phaseolus Vulgaris l.) Antioxidants. Antioxidants 2019, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, U.M.F.M.; Bezerra, M.A.; Ferreira, S.L.C.; de Jesus Araújo, R.; da Silva, B.N.; Novaes, C.G. Doehlert Design in the Optimization of Procedures Aiming Food Analysis—A Review. Food Chem. 2021, 364, 10. [Google Scholar] [CrossRef]
- Duan, X.; Subbiah, V.; Agar, O.T.; Barrow, C.J.; Ashokkumar, M.; Dunshea, F.R.; Suleria, H.A.R. Optimizing Extraction Methods by a Comprehensive Experimental Approach and Characterizing Polyphenol Compositions of Ecklonia Radiata. Food Chem. 2024, 455, 139926. [Google Scholar] [CrossRef] [PubMed]
- Vural, N.; Algan Cavuldak, Ö.; Akay, M.A. D-Optimal Design and Multi-Objective Optimization for Green Extraction Conditions Developed with Ultrasonic Probe for Oleuropein. J. Appl. Res. Med. Aromat. Plants 2021, 20, 14. [Google Scholar] [CrossRef]
- Krongrawa, W.; Limmatvapirat, S.; Saibua, S.; Limmatvapirat, C. Optimization of Ultrasound-Assisted Extraction of Yields and Total Methoxyflavone Contents from Kaempferia Parviflora Rhizomes. Molecules 2022, 27, 4162. [Google Scholar] [CrossRef] [PubMed]
- Moussa, H.; Dahmoune, F.; Hentabli, M.; Remini, H.; Mouni, L. Optimization of Ultrasound-Assisted Extraction of Phenolic-Saponin Content from Carthamus Caeruleus L. Rhizome and Predictive Model Based on Support Vector Regression Optimized by Dragonfly Algorithm. Chemom. Intell. Lab. Syst. 2022, 222, 12. [Google Scholar] [CrossRef]
- Mojerlou, Z.; Elhamirad, A. Optimization of Ultrasound-Assisted Extraction (UAE) of Phenolic Compounds from Olive Cake. J. Food Sci. Technol. 2018, 55, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Turturicǎ, M.; Stǎnciuc, N.; Murean, C.; Râpeanu, G.; Croitoru, C. Journal of Food Quality Thermal Degradation of Plum Anthocyanins: Comparison of Kinetics from Simple to Natural Systems. J. Food Qual. 2018, 2018, 1598756. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Jaeschke, D.P.; Mercali, G.D.; Tessaro, I.C.; Marczak, L.D.F. Degradation Kinetics of Anthocyanins in Blackberry Pulp during Ohmic and Conventional Heating. Int. Food Res. J. 2019, 26, 87–97. [Google Scholar]
- Foujdar, R.; Bera, M.B.; Chopra, H.K. Optimization of Process Variables of Probe Ultrasonic-Assisted Extraction of Phenolic Compounds from the Peel of Punica Granatum Var. Bhagwa and It’s Chemical and Bioactivity Characterization. J. Food Process. Preserv. 2020, 44, e14317. [Google Scholar] [CrossRef]
- Hao, K.; Hu, W.; Hou, M.; Cao, D.; Wang, Y.; Guan, Q.; Zhang, X.; Wang, A.; Yu, J.; Guo, B. Optimization of Ultrasonic-Assisted Extraction of Total Phenolics from Citrus Aurantium L. Blossoms and Evaluation of Free Radical Scavenging, Anti-HMG-CoA Reductase Activities. Molecules 2019, 24, 2368. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.F.; Yan, M.M.; Wang, Z.; Jiang, M.P.; Yan, B.; Shen, C.Y. Optimization of the Extract from Flower of Citrus Aurantium L. Var. Amara Engl. and Its Inhibition of Lipid Accumulation. J. Food Biochem. 2022, 46, e14332. [Google Scholar] [CrossRef]
Opt. Method | Target Compounds | Solvent Conc. (%) | S-to-s Ratio (mL/g) | Temp. (°C) | Time (min) | R2 | Results/Yields | Ref. |
---|---|---|---|---|---|---|---|---|
BBD + SVR-DA | TPC, TSC | 87.66% | 23 | 50 | 26 | 0.99 | High antioxidant capacity; promising for pharma/cosmetics | [50] |
PBD + BBD | PMF, DMF, TMF | 95% | 50 | 50 | 15.99 | 0.97 | TMC = 327.25 mg/g | [49] |
Taguchi method | ATC, TPC | 77.72–84 | 10 | 40 | 45 | ns. | 2.12 mg cy-3-glu/g dw (ATC), 6.67 mg gallic acid/g dw (TPC) | [9] |
D-optimal | TPC, TAA | 76.97 | 28 | 30 | 14.22 | 0.99 | 7.19 mg/g dw (TPC), 88.36% DPPH (TAA) | [48] |
Two-level (22) | TPC, TAA | 55 | 36 | 30 | 68 | 0.97 | 72.7 mg gallic acid/g dw (TPC), 50.9 µmol TE/g DPPH dw (TAA) | [44] |
CCD | TPC, TAA | 3.6 | 3.6 | 56 | 3 | 0.96 | 4.34 mg/g (TPC), 73.5% (TAA) | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyyedi-Mansour, S.; Donn, P.; Carpena, M.; Chamorro, F.; Barciela, P.; Perez-Vazquez, A.; Jorge, A.O.S.; Prieto, M.A. Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources. Biol. Life Sci. Forum 2024, 40, 15. https://doi.org/10.3390/blsf2024040015
Seyyedi-Mansour S, Donn P, Carpena M, Chamorro F, Barciela P, Perez-Vazquez A, Jorge AOS, Prieto MA. Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources. Biology and Life Sciences Forum. 2024; 40(1):15. https://doi.org/10.3390/blsf2024040015
Chicago/Turabian StyleSeyyedi-Mansour, Sepidar, Pauline Donn, Maria Carpena, Franklin Chamorro, Paula Barciela, Ana Perez-Vazquez, Ana Olivia S. Jorge, and Miguel A. Prieto. 2024. "Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources" Biology and Life Sciences Forum 40, no. 1: 15. https://doi.org/10.3390/blsf2024040015
APA StyleSeyyedi-Mansour, S., Donn, P., Carpena, M., Chamorro, F., Barciela, P., Perez-Vazquez, A., Jorge, A. O. S., & Prieto, M. A. (2024). Utilization of Ultrasonic-Assisted Extraction for Bioactive Compounds from Floral Sources. Biology and Life Sciences Forum, 40(1), 15. https://doi.org/10.3390/blsf2024040015