Python Data Science - SciPy



What is SciPy?

The SciPy library of Python is built to work with NumPy arrays and provides many user-friendly and efficient numerical practices such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install and are free of charge. NumPy and SciPy are easy to use, but powerful enough to depend on by some of the world's leading scientists and engineers.

SciPy Sub-packages

SciPy is organized into sub-packages covering different scientific computing domains. These are summarized in the following table −

scipy.constants Physical and mathematical constants
scipy.fftpack Fourier transform
scipy.integrate Integration routines
scipy.interpolate Interpolation
scipy.io Data input and output
scipy.linalg Linear algebra routines
scipy.optimize Optimization
scipy.signal Signal processing
scipy.sparse Sparse matrices
scipy.spatial Spatial data structures and algorithms
scipy.special Any special mathematical functions
scipy.stats Statistics

Data Structure

The basic data structure used by SciPy is a multidimensional array provided by the NumPy module. NumPy provides some functions for Linear Algebra, Fourier Transforms and Random Number Generation, but not with the generality of the equivalent functions in SciPy.

We will see lots of examples on using SciPy library of python in Data science work in the next chapters.

Advertisements
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy