UOP staff
ΚΟΝΤΟΝΗ ΔΙΟΝΥΣΙΑ-ΠΗΝΕΛΟΠΗ
ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ
/9j/4AAQSkZJRgABAQAAAQABAAD/4RKiRXhpZgAASUkqAAgAAAAEADEBAgAHAAAAPgAAADIBAgAUAAAARQAAADsBAgAHAAAAWQAAAGmHBAABAAAAYAAAAA4BAABQaWNhc2EAMjAxNjoxMDoxNyAxNjowMToyNQBQaWNhc2EABgAAkAcABAAAADAyMjADkAIAFAAAAK4AAAACoAQAAQAAAAkCAAADoAQAAQAAAG8CAAAFoAQAAQAAAOQAAAAgpAIAIQAAAMIAAAAAAAAAMjAxNTowODoyOSAxMTowOToxNABlY2NjY2U4MmE1MWZmNDNmMGEyMGE5N2E4NmNjMTc1ZQAAAwACAAcABAAAADAxMDABEAQAAQAAAEwCAAACEAQAAQAAACQDAAAAAAAABgADAQMAAQAAAAYAAAAaAQUAAQAAAFwBAAAbAQUAAQAAAGQBAAAoAQMAAQAAAAIAAAABAgQAAQAAAGwBAAACAgQAAQAAAC4RAAAAAAAASAAAAAEAAABIAAAAAQAAAP/Y/+AAEEpGSUYAAQEAAAEAAQAA/9sAQwAFAwQEBAMFBAQEBQUFBgcMCAcHBwcPCwsJDBEPEhIRDxERExYcFxMUGhURERghGBodHR8fHxMXIiQiHiQcHh8e/9sAQwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e/8AAEQgAoACIAwEiAAIRAQMRAf/EABwAAAAHAQEAAAAAAAAAAAAAAAACAwQFBgcBCP/EADcQAAIBAwMCBQIFAgYCAwAAAAECAwAEEQUSITFBBgcTUWEigRQyQnGRFaEjUnKSwfA1sUPR4f/EABoBAAIDAQEAAAAAAAAAAAAAAAECAAMEBQb/xAAiEQADAAICAgIDAQAAAAAAAAAAAQIDERIhBDETIgVBUTL/2gAMAwEAAhEDEQA/ANZY4PC0m2MdOaM2NxobeM1hOiIFiCOlEyScEUo6rv5z0osqgnHNQIQYJGQOelFYEN8Cj7VAGOTRXcgnpgdTUCdVsjBojON2N3SmWo6lbWVrNd3NxDBBEMySSOFAFUPxB5s+HrJpYtKtrjVplH0yY9KHd8k/Uw/YUylv0K6S9mkFgFzRd655YftWE3fnD4nnlIjstJhiOMqkLbv9xbinlr5m3B2G7t5oyf1JKCB/IpvirQnyz/TaiV60Rzk8GqD4f8d219IIxMHz/m+kirnZX8c3GNp9jSNaLE9jpSemaUOdwwOtFXnnijO44wKARNlI96Kq9+aUzkc8YoKSRioQIBz1oUpjB5xg0KhCU28UUM2MYzRpSSTjpik1zkf3qMUDHnkDNJyEnnIo0mASaSmZQOnNQIlKzLyTiqV458TxaXC0W5vVwDtHYe5p/wCMvE9toVm08xVyvCxlsFj7CsN8T6zda7fzXTDDzuNqKchR0AFWY45MS7UoZeJPEWoazclLi4kkiDZCBjsz74pnZ2ctw20d+K0bwh4GhCxTXBSTKgnHIrRYNFtVUKLW3UYxhYgOKseaY6SBHi1k7pmAHR5ozgRl2PQDrRV0XUJnwlvMCOOVr0RDpFpCp2W0IJ77BmiXGnQuu0xLj9qR+Sy5eCjzosF/pk3qMjrtOckVe9A8cSJAkc7BWwMknnpwKuOtaDazwuvpKG/aso8T6G1hK8gjO0HgiirV+yu8DxdybJ4a8WWl+0dtKyxTNgAO3Un5q1ry/OK83eH9ZljcFwv+EQV3d69C6Pcx3VhbXUbqyTQq4wc4JA4pLjiSLVIe4LMSMfxRlBUdcn2xXVbAOKBweetIOcJ746UK4fsKFQhLljnA6UXoBXcjByciky1QUJM3FMb+Qw27ycYUfzTuUbj1FNdU/CR2M8l3J6cSIWyBklh0AHck1AmC+aOp2+o6/NpwkLLaKFZlbhpDy38Zx9qjvA+mHUNUZQDtRMk+1QN/JLcatPcyEs80zM5+Sa0fy3s0it3mZlDMxOScAL/3Naf8xsphc8hoOgxKlrHkYwoAFTQKjGATUNp2oaWVCrqlgSOMC4Un/wB1N23oygbJEbd0IbIrI5Z05pHSVI6Uk5XOMU+Fqdp3OAo71E6nq2jaexS4uzu9lXJP7CopbC6lCN5EGHuapvizTPxFq6Ae5GKtDarBcxk29nq0ij9f4CQIPvjFRt7cQzbkDfUB+VlKkfY0UnLFeqWjCriN7S6l2ggqSDW1eVl4k3hmzibidA249mG44/gcVmniy3S31CYEYLc57HNTXlVqslvM1hJGf8F9wI64PWtWRbhM5kfXI5ZtMTbgKXwCvA4plbSK65B/anKHHQnFZjToUIA7dKFFye7cUKACRf8AICBSeM/tSrYbhT/NEbgAcUwAjgDLZFZn5z6/Ja6athZFjLM2HkzgRr3I+T0/mtHvHKQsfisp8ybdLq1nmMyo6LnGKM+wP0Y6146lgvCE4PzWyeXNvD/RdPurm3SVWh9QCRcjJJ5I71kdjZR3t/DbO/55ADj2rf8ASrSEaZBawgLHHGFUAcAVbmrSQvizum2RPiDxHZRaZDqU2gW8lpLcG0gcW8SySNjJ25Awo9+M040CziOm22t2qvp8dzareQI0mBKmTxgHAbg8VMw6PaNaGzlRpLViC8LncjY56GhqkMEMZS2jjRSmGYJg4H6QfalVzxNSiuRLT6kr6QJOfqXNQSWryyRvarD6zRtKSSNwCqTjnnJxgAd6dN/4dFA6IKNpccMhX113RjkHGcVXL0+y6peuiq+GvGmsaxbXc0dvtjso43lRptxYuT9I4H1DHK1NtINUtoZnT6sZBPUfGambyzs3G4QRYP8AlpqIFhB2LhfapbW+hMctLsyLzVs3tispztHWonwRqEVhriNcOwgnURsRg4J6E/erp5rxxS6HM7ZDL0PzWXW0npC2YgEMgJGKvjdYzDn+ubZ6Q0KcPGyZD7DhWByCO1TS5x071nHlxqstxbL6hLoBgtnn71oUbgqCMjp96oa0XJ7WxxjJ6cUKAOFHOaFKRkgyfT8/FN3IVfq7U7Y4XrTWeNWBznB9qOxCM1q89G3YlGICk59h71ifj3Wlu5HWFSuRtJz1q+eZA1Sx0y7v4WQJawljIW7ZA5HvkisOv7u5ncyTEO79yKshbFqtBdOdo9UtWUciUGvQfhZ91lGSQSRWFeFbSfUtXjtoImlk2lyq9SF54ravB8vq6fESjJImY3VxhgRxTZktDeJvbLhFEjJgDn2ph4hg2Qose3eTyPgCntrIRyx4FNr8maUEHGDwTzWdaR01savqGknwyl0syAH80u8FAOnb5pXw6scbsruk0EkYeGRGyDz7jtRbfRrZbUJsRY2/QoAX+KVsbaKzYLHtVQNoA4AHsB2pmDXRLXVj6UayAAA8giovUSqxntxUoJgsIXcSO2ai9TUOhNDoXv8AZmHmHFdXttJYWkZkmkBIGe2Mn+1ZPNIWk2hdpQBce2K2u9J/qeo3zRxPHaWrKokYDDMCAQO5HWsdS1BknByWBHI7k1qxdRo5fkrd7LZ5S36weJEsprmRIZlzwuRv7AntW62ScHuM8ViXlbpgk1WZeUlABeYnASPI+kDuSRW5W4DYKlcDoKov2W4+pHCqMcmhXcEsOmKFIMx7KecA0jK+E60pyxyeD+1IXKB4iucH39jTCFG8143vvCuoWsW8ymMOFH6trA4/t/asDnf1EjwhVsc5rcPGsd7ArSSPlCcZU/8AFZFrMaR3wAGAxz/ejiv7cQZcf05bGVk99YTW+p2dxNayo52SRthlNaZ5QaxPqFtP+KmknuElIkdzktnkE/8Ae1ZdJcs96oXmPJGPin3grXj4c8RrcyF2tZR6c4Ht2bHcjr/Na8kJz0ZcOXha/h6O3HgDv1qA1fV7+2uRBHaphv8A5C/9sVKWd4ksKOjJIjLlXVuGB6EVwRJPLiSNXHyM5rB6fZ3cdJ6ZDR6jqp2rHH6jSdAELfxgU2bUtZSYxwiBpOm2QHj+Kt9pYyRHNncXNsCMEQzMmR7cGufgIoclIwD39z96d0tGms0aa0I6Wl4lov4mdJZDySq7R9qc3bD8OcnBxQRgi4JxVc8ca5/TNIuJIQZLn02MSD3x1PwKSFyZjyUpRjXmTcpd+NbmOJtyQYiyB+rqf7mmMQbc4yd6kH9zikJNsUsa3ed8hMs0g/MxNEgv+qkY6gGukpUycOrdU2XDwhrg024X8VbyNHzkxEbi3br2ravDup2t/ZxyQSZ45VuHH7ivPOhSrPMVc4OORnANbL4EjEUInKek7RKuD+oZyD/+1iyLs243uS87s4wMUKREuU+aFVlmiRY7RnrxTW4lyhwM04Y/TzUdrF5FY2hnlEhO4KqxjLE0whRfMO+dgkKaZePwSZUUGMD5OeP2rLNRiFxM0gBJUcAVcvHF14nlsVvNWSSztZFLWkabWMq5/M/1ZX+Kza2nnnndmmMakEKPc+1PGP7bEu/roJaWzL691IpAA2pn3Pems0Qlmk9IZCrk0W7ui7m2ic+mpILe/wA0SKUxxskTEb/zfIrdJz6L75X67qNnY3Fs2bmyhkXCn80O7PT4JHStK0nXLd5V3NtDdCayTypkDa5e2rY2zW2furD/AO60WLTQJiv5QenzWTNCVHT8TJTgv9nq1sIyQyN9+lMtT1q2QMFdWbsFqvQ6bMB9IUill06UjDkAewqnSNTtiF5rcoGI4yzk4Vfmo/VtOmm0e5lu2D3NwoyxHCjOcCrDp+kIZRIyg46UrryiCCNBF6jykqqYzkAZJx8Cimk+hK212YH4mgU3Y2jkZXg9fY1ARqd+Md6k7u5Ml7I8UnqkkgMRtAGenNMLht0mQoU9wK2+5OTWuQ/sy1uy3AGcHg1qXl/rf4uOGHTC1xPFk3FmxCyEdS0eTz/0VkYmkjt9mepzikfWkEiyI7I6nKsjbWH7Ec1XWPkiyMvA9V2t1Fc2SXEL7kcdcEc9x8EUKxbwp5o6lZTlNegGowSbQ8yARyjnlyAMO2OpwCe5NCqHiaZess12ehsM5CxqWYngDv8AsKqXmD4i0HQEjj1PVLZLyOQSfgoj60+B7op+kf6iKzPzA82tWv7+ew8JXc2maSm6IXKKFuLsHgsWPKKecKuDjknPTL0CpkgDnr81dHjtrbKL8jXov3inxqmsOUt7NoYCuB6jgnHXoOBVJllAj9RGwwbGP+aS3kkKB16UlICrYPX2NNw4sR5HS7BG8sO4x8bxtJIzxXUBBpa5mWeMRRosSqxZc8/bNIn6Uz7Vojoz130XnywtZI2/H7kCyT+mQQcsoHY+2TWvQ2yyAEDmql4U0j8D4V0hgoINsszkc7i/JI98Zx9quekuomCZ3BgCprDme2dbxY4yOraAlcUtHaFmwBnNSsEEZXOOetOraJAcgc1Qaxlb2gjjxjkVDeIwLWA3xZR6CPjJHdTwKst7J6MJfY5HsqFifgAdazrzM1nQLbw/f2ms3kcuoyxEQadb4keIkHDSMPpUg9ic/FGE2xLekef41PorI+/A/UB3oXapGQYpxJkZYjt8Gk9zlApY4HbNExxXUUdI4brs5ncBnmuY5ya6OKB65puANhkJ96FFUdqFLoi7FTwOBRT9qBY8kjNFJycmrF6F9nT1pa5uRcSCSSNQ+0BigwDjvSJZQOtcBB5pXKbInoMzKxG1doHaisCSB710D4o8Y3TJGqkliAAOcmma0hp7pIsfhrxBrWhDbp18wiJyYJQJIif9J6fbFWjS/MW+tbgzS6JYzEnJWOZ4wD3wOcVRIwduMEEHFKxk8nsK5t6PRY4TRrsPnIixhT4QG7PJ/qRxj/ZRJfOTUTGRZ+GdNhfs011JJj7ALWWI4IDLgj96MLgbygC5pUXfDH7ZY/EPjHxPr1yJ7zVHt8IUWOyzCiqeowDk59zzVS1JRFasFAGf5NOJJ5BEzDAx8VH6vJmYxLKsqA/S6ggMPfB5qzHp2kiryqjFiehiOvXFD4rvaucEc5rpHmmcwKFD6fZq6CpyfqoA2cJx7ZoUN6rn6M/ehSNJDJg2kjrQI6YruDmu9hVmhdhMc4rqgCu4zXKGiHQcUAMuD7HOfahRouWz9qOt9B9dkhEAbfIJHFO7oSpcyrPEkDnBKKAFHA/4ppaMvpKhVcpnLZOWB96exmWF45EdFbaGRlYNgEY/9dq5lpqmmel8aleNM5I5lcykIC5ydihR9gOldDuqGPefT3b9nbdjGf4rkUirIp9KKUKCNrg7TkYzx3HWi7huYOpKsuFYNja3Yn496Q0t6RwhmUMNpUtjBbn+Kibli87Mf2FSF4wiRxuUsMjcnRvkVF5PvzWrx529nI/JZelADXARxQJGcUK2HHOkj/LXMdqFdx3ok0FC5bBFCjNweaFI0FH/2f/hAtdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuMS4yIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bXA6TW9kaWZ5RGF0ZT0iMjAxNi0xMC0xN1QxNjowMToyNSswMzowMCIgZXhpZjpEYXRlVGltZU9yaWdpbmFsPSIyMDE1LTA4LTI5VDExOjA5OjE0KzAzOjAwIj4gPGRjOmNyZWF0b3I+IDxyZGY6U2VxPiA8cmRmOmxpPlBpY2FzYTwvcmRmOmxpPiA8L3JkZjpTZXE+IDwvZGM6Y3JlYXRvcj4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/tAHZQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAPhwBAAACAAQcAVoAAxslRxwCAAACAAQcAjcACDIwMTUwODI5HAI8AAsxMTA5MTQrMDMwMBwCUAAGUGljYXNhOEJJTQQlAAAAAAAQ+eblh7+95FVFnZ9/Gc1Sov/bAEMACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwoNyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm8CCQMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAABAgADBAUGB//EAD8QAAICAQMDAgQEBAQFAwQDAAABAhEDBCExBRJBUWEGEyJxFDKBkaGxwdEHI0LwFTNS4fEWJGIlNUOSVHKi/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QAIBEBAQEBAAMBAQEAAwAAAAAAAAERAhIhMQNBEwRRYf/aAAwDAQACEQMRAD8A91L7gSrdjNbAe3ocHqDlWRraw3aBYCuNi9vuM27JuAEqF8+B3tyIQFcAryBuhVLb9QLAP1Apg7v5gFgfqRvbYF7gRvcjj9gpEteQFS+xO3zsS6dBACQCx8bCSVBQ7mC9yMN0BLG7t+AW6I3uA6d8Ae7B7hCJtYWk+Ba8g3CixXvwBpkV7gFtr9ifVsB3f6BWyQBfAFsFAfIAt3wQNpIClbAm5PBLZEECiNMf3F/sAvpZEgvwFbBUFY12I3uBN64QO+l7h5QrAZS9gt2hFwF/cBk9gp3+4q4DHkBq22F4Y10xG1ZQyqtwSaZE90B8BAv0sDkyduwaqiKDfALCRpgLa9WFKwUxt/DAKIyJP1A/uAOAqqI0/UOwE2r3Jt6ka9ABHQcnYGxm1tQJtUELdIXcf80dwJKiqC+4bI1uB8EEbsAUDfcBa9QVa4Q3C3Fb8AL2tS8BlfoSq3GtsCu6/cG7lZY7FtpgNTSEbblXgZyFv6uSg1RLpjN7ciO06sirE/YDVrcCG5RBU2yW2NTvgPjjyUJZN2Gt6DTQEjwxlu7EsisYHbFdBtUVTlQD7UBNFSlsNaXgCznfxRORL9gqXsEPdCvfyBNPYABq/I6hFK/JVbSFeR21QFrkuCIpUvLCp7bAWX4CJCS8rcLdvgoa72BasG1rYFbsim5FluiXuRABVVh5RGBJgCg8eLZLF8rkodeiGQpL3AbncV/YeKoD4AC4quQu64DH3I2q3sBfHAsm64LFTWwGuFZAlvbYDbsba+WClYEVE9hqT3IltQA4XkC/Lv6jNIVgSyeAV/MNe/kAhqIt+AgbpR3FldD+BJPfYIlbbg4Gd9oHb4AjZHuBq+Q9tADev1IwvZAW6AXxuV1bLu0FIBHFoK3GIk/BArEfJbLj3FKKndkTt0WP7AUfIA8OhWndlqWz2BT9ApV/AeheAtutgC0TZFfe/JHIIZ/msLYiYHKiiVbGulQnfQjm2wLGxHuL3NsLTUb7XXkAUtwU2rLseJzv6G69C/M9LpccpZ8uOPat1J15oCrDhcuUWS0s2k4Rbv0R43qPx/DTarJp9HHBKl+be7/kcbVf4hdYcHHBl08e5JO4O1w/6DE2Pp2LpuoytvslSVtvb+Zl1kfwk3FtOS5Vo+QZvi74hzzfd1FpOPa1FOqG03xX1fC/r1EcqqvqRcNj6ZPqMb4J+Nj222tkeMwfFGLKoLP8qMmnbXd7m2HVNPlpfNjum7LhseieujO2l4Dj10ElZyNPkxZIvtmpVG9hnkxut1urJhruw1kMi2/iPDMuLR59ZK3i9mWY9TKM074JivQue6CpehysetvZy3NeLPF1vuRWoK32KllXqPGYRaq4DSK1K6sN7iKLSFa34Je4b9wIGrQtu9mOn7hDLgWQwvdu/QKidAbT2J3e4O4IattgPkCkRv0ZQqX1WNe5EvUVvfYinvyRvbZir2YfAROfJHxyBMK3Chv7Be6AwqS43AleQ0Tn9xgNcip/mHtsWXgMrPAj2D4F8gH0GA/Ay/QKHkm1+7C1XoJ5sAN7CqQ742EafigCGLpijJNfuAJMS/5lkosWq8AKFEadWKrvwA17E/UHrwLb4CiwvgnCFlJLwEIwtNi8se4qPPkoXdAm1x5K8uZRbplLzXdsC7mVEnil4ZR82stRkr+/Bh618RafpujnWfFPPH8qjlXJR0Z5cOiyJ6jNjh//AGmk1+hk6z8a9F6XpprHDFqs+yX+eqfD4SfufL9f1/qXUpynm1WVd0rpT2ME5Tyu5yk/u7NSM3uPT9R+Pep67UZJ6TGtJimto991+3vR53Wa/V67N36jPOV1ce506r+xRGLT5Ha24NeLF6VwjW62YXEIGmWcseQKlygSimwqI6WxfE0kMe/Jqj3pbS3K4rcuUlFF8U8i/MyRdOTqt92jfpuo5IpJyk6VHPc1K7K1Jxexm8tTp6XB1hQaU03H7m3F1OGWmv5njnkkX6fUyxvZkxudPZ4tXckk+fc6WHM+xM8Xpdd25Yt8Wd7T9RTitnwYsbnT0Ec0nxexox6i+bMejywzYO7dOuA45PvaM2NOpDImuWWqe1GKEqRfGafkyNMaaJ+okZ0OpFDLgX9Ru5UK5ANe3IvjkCkxW1fLALfqRMidhTXoAKGWy5A37gct+QhnwK37E7vfYDf1LfYBiJolsIUa9A1S9iK0uSJ2gBQK3G8C37gFP3DfuK+SAa6RK9gpbBorKJ7cC3ugqLJJOiAthTK728Bugp2yX7CqRLAlAoHcRSYES/mNWwPuCwJasj9gPgQBtrB5sHgR3fIU3dTF7vAPIskA7kK2vQi9yuUktwgzl7UZs+VqDphyZb2MepnGEG5NL7ssFLzttq/Pkxa/XuEXGGRJxe9NGLW63sjJRdPweY1GpyrJKcp33Pc1Izbjq6rr+sxKSjnat3bbf8L2POanVZtVllLJklJSd1JtpAzZ3NuynvRrx9sXoGhkwXYEdPFz0XdjeCVY8Y2ixPqprcnbaL1ifoF4/YpihY2OsbouUCPYmrimnFkk32ljVsVrwTVxRbCpDvHYvymTUwsp0SM9yPG/QVRafA0ytUJJUzo6TU1JXbOOpMuxZHB2Stc+ntdBra4bSfg6Om1LnJto8XpNe+7t3vwdrS9QljdN2ZsdJ09K9TVbFkdR4un6HnVrp5HszTDVOMe5vejONa9Fjz3W9miLbRw9H1HC2lJvdc0dGOsjKSjGzKt0WR/qUxzK+S1S7tyKLe1EUb4A2iKXoAyW3kZRezvYRPcbuYApJ7iuW+xHJ9wK3AbaibLyCt0Cn3ANY63QnYxopoA2/JFSXoAi35YD0q5EWzI2yKwg0HYWyWFb62okUGk0RbIqADetwgbQC8OiNv02I36BsgWtyO/A4L9gBwt0Kthm6RX3MBm9wK09yXsBNgM9/AO32B31t7h7rADXoK478Ecmg9wCtLmhWrG9xZOuQpJOkUZJIsk7ZVkX0tvhc2VHP1uqjijbpeGec6p1PLmqMXUVt5/uaOs6qs+TEnHuTadP7nByZ12O0akZtV59V3X5fuzmZ8t3fI+afLowZJuUjpLHLrS5HuBB7Wy7HgcvBbcZJC2WKFl0dLNuoxZpxdN1E7ccbaXLHks4rNjhZphp296NEemaiN/5Uu5GrH07VVfypU0S9xufnWOOnYXpndHUWjko7xd+4v4eadVuTza8HKeCnTKsmFt7HWlo805UoMvh0vJ2/VF+xPJfBwPlSirplSUpPjY9b/whOP1J7rkSHQYX3pvjgnkvg85HBKhlpZtKkz0f/B9rt/sWw0ccUaY8l8HlcmmlBbozvDKTpI9Zm0cZ8rwY56NQVJMaf5vNfLoErSpHZzaBLemYcukq3TLrN5ZsEnGW12b455La2YlHs+4Hkcdy6w7ODP279zs1ZNb3RUU72POLVOjRg1FyVsmJK72nydv1W/3OjpOpKOSKlKkcXHK4bCwhN5VuyWOnNe50+qx5lFrIm2632Orjh9CafJ87xZs2HLF451TTdt091zv7fzPX9J6jkzwUMkVs6W/gxY6OrW1MiikK39grfyRlZGhrXaIltyRW0FDZ/cP6AUbY6QEXK2I+bSGoiQQIu92RtXswOuBePQKYF+iQU722A9ggWwrgjqkTwFK+QB/1DbAdHYV7IdK4lLe9FQyewlu3sN/ESdrgA8k39gRI/uQFPdbDUJH0HAWW4iRZwvAKtbAL+gaA0QAdlu6C1QbBJ7AJK74B3bhlKhHxdbgSUyqWS2wzlUTHkz9ttKyi/uttf7/3sZ+oZFptLPJNxpLdOW653owarrmHQ4nOdSydyUYKXPP9jzHVviHNq5PH3NRTtJSdJ2/6eSyFuOfn1Ty6nJkdLum3/FmPNk29QSm5SteSrM3W505jj10z5sl8FeODnIau6R0tHpJSlH6eTWxme1OPS3Wx0MGk2X0m6Ggkkn28nV0vTn2O+TPXcdufzZum9Ox5Mn1p1fp7r/uehjptPjh2xxpcWxMGH5SpIvUGzlbXacQixYbvsTfr+wzUa/KiyOOvA6x+xnybyMM9PGXj+AMegi221+h0vlhjGttxq5GfHo8Clbgv2X9h54MfhV7F1P0FaJ5HizzwKSaS2DHDFRL1EDVF0xllgjTM09Km7WyOi42hHAamObLSp+pTk0afqdVxornEaY4mfS9sdrOVn09uq3PVSx2mmueDm59P9V0WVOuXk8+naZkyYdj0eswqtl/A5GTC09zcceuXMliokLUlRqyQozy+lmnLG/BncElZtx6i0q5OEs1Pk1Yc7vkv0lx28TuScjv9Mm1KKieTx5pNJ2dLp/Vcmm1eCLpw+YrtpbWvLJ1G5XvIfkTvlWOuAfLXy4Sg+6MoRkpezVg4dM5NLo7rkKewIflInQVEr4LFSXIqoP7ANwhXLhond4ImAN2gOND7WheQIo/YFbEvYKargAKKrclUDurwHle4Ae/kNSIv05GtewG5NpCVuNBbbkcfQqFaFq/BZW24OAK0tw0G9uCbkES3Cgb9yCvsAr3XIqTXkd78UTxwAjYIuwsS6YDN07Fcr4DKWwl7cABu3uLP1vyF7IoyzUVuUVZ83bas5+XNGMXOT+le6X++Bs+XuTr7Hkuv6iWSHy45KcfR87Nf1EiW4xdU1v4nVTVdsYSai7+5zZNNmTNlcp03Y0G3udIxel/duJlltQO4s7e9cHSfHK+6XS4fmZYr3PadP0OHHjUquX3PPaPTpRTrez0nTcU5R3e1+pjrqO3HDYsKulE2YsLirQsMdbGqC4ONr0yDGHsWqCDCJYomWiJew3bYyQUiKXtJ2llMle7ASvYFew7TAti4qun4RGvYs/cVoCppAotoDQRROOxVL39DS4lUoAUSW2xlzY75NcthJK4liVxtRp0+TlZ8C3PQ5Y2zLLTxk/q4Nc1jrl5LUYWvJzckWnTPS6vAozdepx9Vh+rY6Rw6mOY07LsLamgTj2vckWrRuONdWOSMYplizRk9lb9LpMx4u2caseMeyXcuUTpvl9W6Zq/xPStDOcrk9Lje3ldqLpx3e55PoPU9THS4MPf3Qx41FKnttVLej0cNQ8iVqmzjXVqhLwNsUwmWKV7kD+xFuC+Ar9KCoS1QJNWK20FWckfGwqbG8BESVWR+yBdKrImgDS8k8EYtMA/clr0BRK9wOirYrbTCrQJ78BBvYV8ATdEt0AGndjICTD5Kgbp2HwRPwwNoioK36B8CsCfcrLG9iuwI3SFbQW9qFlxxuAkpKzDrsiaqP8zXLbG29jlwk8upae69iwUa2PydG8juq/SzwGqeaeaXfJtW9j1/xh1HJosWHT41GpP67kr/AGPJY5rJubkTpzMmKXePFUqNeeMbtFDqzeONJ5N2kgpLfmzGdHp+JuS2bVjq4vHOt+PFKLSS2bPSaGPZhXajFHTrsVo36R1Htfqce69XMxsxtvwaYJ0tirGkaYKkjLenirHr2BFj2TFLQyv0I2TuCjuSnuS9gppAGhKH7kxbVACgNBA3QAoVrYl2w2EVN70B1RY1b4EaCs8o8/YqcfBpkvcpathGXJBMyypNm6S3M2SG7LKlcXW47lscPUQakeoz40723OPrcFu0dOa5dx57NHcp7TZnj2yrkzbNnSPP1FuKXbEeOTudMoWy5FUqnyavxmV6/wCE8uPUdTelntWNtb88/wBaPYTgsU+1eHW58++FskcHXceVuK+hq5cH0fJlx5acWnaTvY4V35+Bj4LVsUwLEzKrLDfoIt0g+Qp3uMlaWwiHTS5YDcL9QeXwG7A2gEcXfgiixk1xYbpJUAKdLgL4CwbUAFxexP2JYANzkkBuyVZEgyFBTI+AS4SQUd2RL1BwSyiPkBG9yW64IJQsqXI17Fct/BQHwTt2sF7AtgFqwOO1kvgEns9iDHq8i7e1epT0+eHFncsv5U7aTSv/ALC6p/VVcnO6xOOm6Jm1Dyds00ox7qbLB8/6/wBS/wCI9a1GZflUpRj7KynDkpJexj7W3v5du99y6Mq4Nxy669tU5JlcgKVhqzrWN2pBXI9L0jF3yX0frZwcEE5q15PW9M7MCX0nPp24jpSxVjuiadb2WSyqceOR8EVaOVd41Y7RensVLhFkSN4six0/JXEZPYimkLYd2G62IqJuhk/cH6hSKoN7kXN2GmD9QyjbvkVt+oXyKwoceSNqwpWRxfPsEC7/AGAwk3AqknfJW0Wz5K26CKZx+xnyRs1vfkpnG7oDBlhcTl6vFS48HanFGTPjUka5rHTyGrx036owKP1HY6hgcctXyc5w7ZKzty83bPKO5U6UjZ2WZssakb6c47vSccV9dpOvJ6vQ6hqUYtpKqpHiOk55R1Ki39Nb7/c9fGLhuuTlXbn49BjkpJMsMWhyOeNX6G3k5trIsN+iFhsuBv0AfknD9wRa9iSasCy7JQiatDpqgoV5G2oiZLQCvfyTheA19gvZBCVsQLoncvQg2O1uBNvcLVoC2KhqYPuG6BLdADyR7A4RG2UQgLJZBO6thJMd8CS3Q0L6kSsleUNFbcgB7NEdNbjMHO1AYNVgaTlFN/ZHjvi7U43occI28nffO3+/7H07Bgi4N5F9K5pP/fg+QfFUIvrGTZqH+lbpLb0Kl+PMS3k+efJEy2UY+Cp7M6T65VZDk0JVGzPj3aNfa+w634zzGvpmL8RmpbVueowQVKkcfoeGOJvJvbatHfwpbUjh1Xp4jVjSpGjHs+CnGtlt5NEF6GHVcuSxezEgpMsivUY1p488jUBLyMrYw1Ix35Gcd+RoobtVexPE1S9mFIt+Xe9gcKJi6V7eQNWWLHY8cOxTWdxbJ2eyNUMCfIXiinVouM+TJ2/yI06NDhG+RlhUo+f2L4p5MDuxXZsnp6t0+L4Kvw7/ADNOvsMJWaSKJbM3fh5NPti39kZJpKVPYzi2q2yuT2LGr4KJXYFczNktI1TaszZVsP6WenA18bnfk5OTHuj0GsxNps4uRpZKZ34rzdxkezpmbOreyNeVRu0Zpb8nX7HC+qbSSXfzT9Ue06fqo59Njtput35W7PAJyxybTo73Q9X2Wm/D2Zx6dea9josvbkUEnVHWjLb9Dz2nzxtTXLR38E4zwxa3deDk7RantyOtytPei2OwRKr0C02iVuN4ClWwyv2AlvwNS9ADyvAthiTtTCCnsCTJwRUwClaDQEvNsb9wNSlTA9wL7DXSVIqCqXIuSTvYDlfgV3QBvYi34/cXciboA8cgTd+wN7Y0Xa4IC2q5EbokrAgG7klwSL9iPdcEvYAOXoKnLvT9At/zKc2qhig2/wCAFfXusTx6XDptJXc5f5kqT8rbj0s+YfEDnLLFu+5X4o9bqcsMTllnk7V3Xu+X/c8Tr9T+Kzznv+Z0mbkY6c6KdUJKDsvWzrg0QwxcNzpI52smKNSR0o1NJGOcVF7GjTv64pltXiO/oF8vGkdvT1KqZydPFdsWjRLVyxUoc3ycunp5d7HhXZ3SdRT5BPX9P00njyanGpxe6Ts4sOm9S61iax45RXd5bSvdeP8Ae5Zj+AdY335NVjir/wBLTk3b9V9v3JI1a7eDqfTMklesgrdbmjNrNHj/AOXmjON0mmeV1vwT1aMa03y8lOvf1vj02MeH4Y61jXzMmCMIOTdfMdr0NYx5PcR1OGSb+ZHZW9x4zi5NKSbR4bLpOp6aEHkx5FUuFJvjh8kwdZ1+jd/Kjk3p/MUl/UWLK928kYuu5WPGSb52PJ6b4ieWT+ZhWNv/AEq9v4nXw9SxZH9Lb2W5lvXdi04i1cr9ijDl7oJmiHCMmmiqYZypEbSM+fJS5KGnnUFV/qYc2rcW33rgoz5201Zy87yTl9PoaxF+fq1SlF5Ev09jm6nqEpS+jLbrZ0vYE+l58r7u5Jer+xq0nQHJN5NUo7bKuSpXHXUNXD/l5d2trimVPX9Wyyfy458lx7WoY0k9/Frk9zptLpMDjUYtxVbxVHRxaiGOnCONe6hG/wCX9RbEj59i0fxDL61gzp9v+pR2Vv2ftwacceqYv+ZjydvuqpbnvsvUs2R/VJulS2oyZNTKVW/HoZ2NSvIy6hkxyueyS32ZbHqMJpbLi9mehvE27xwdve4pnO1nS8eeMpYp/Lkl4iqfJMWVj+bGUbXkrnK0UqE8U+2W5bWyGNMupSlBo8zrMcoZLPT5qZxOoxS324NcuP6OS948lcEpyaTJlm+2kUYcjjPc78/Hl6nsc2Nxu9y/pcn+IUW6QueSmh+nw/8AdR3r9DHUXl67BjuP29zs6JvHBL+pzMWKUIpXdo24ZtNJnGvRy6kJepfGSM8HHtWxbF34Iq5MlsWMdh0giIZKw1T3CluFKqDwSKV7sLjfARG1XAFXoGgARukiWwNbIlewG27DTBFhb22EQrVC3uSTb2BwUEmy8Eu4i+fJBPOwy2Fretxl6ASV+go/gFAKBWM1QvLryUJO+DnZYOeVQd822lwjfmahVvdnmfijq2DTdN/yVLJmlLttSqthD+PN/FPUFqNdHDg7vkw9XVv7HA7rdlC+ZKbcpScm922WSlR0kcqk5JbskdQ0qTKJzvyKrNz0xWl5b8l2kl3aiCb2bMSe5t6a1LW4o3T7lTM261z9e0hFRhFLijfoNNj+dGc0nTunFPw/YzSh2tJeOWbtK6ic7Xp5d6WsXYowUYq7qMa/kVrVTSV/yMUZ1G34Muq18MUXJzqN9rIuOy+ovGu5OpJ82ZMnV8k8koRT55tv+Z5v/i89Tl+TijLd7KrdblWt6/i6U1+Jxyk3KqRqSp6d/Pqc07Uqa90Ysmnhnb+ZCDXP5Ezk5PjfpvY0tNlW6+o3aXq2LWYPnYV3Y/LfJo2El0mPc5xdL0SoC08sU9m0vY6OkzRzZXjl9Ml68HR1XRsnyHli4ySXCQsWWBocz7Er8cHTwyvk87otRGDlB/vR2sOVON2c602ylRjzysueS0YtRkVP1IuMmVKxFCvAksl5KNShJwuh7Ss08lKlRS82Tw6Q+qyxxQab+omg0efX455MCTxx/NK1sbkRITlKVdzb9EXfiJ40nex4XXfEHUI9Vy4tJmlHHBqP0vZte3kTJ8R9QeNY80pOUY03bbX8DXiz5x7yPUZNtexbHWKXPJ53Q6fVarQR1mOEpQULtOwabqKUmsm3hWYvCzqPTfNjIkptLnY5Wk1scuSr2o6HcmjLarNGMvC45M7x1saWk0DsTQ0czNGjia9JpnpcuLl0jh9Rw7Oka5rHc9PK56UjOvzcGvUw7XujHGS+YkdpXk6+r5R2BCU8eROOzS2d/cee4q2lZOjl7XpcsubTRbTltzZ0YqSkk01Rwfh3qGnxT+XqHScH2ur/AKe56eEVJs416Ofh8GSLaTZ0IJJI4sbhqdjr45ppUyC9UhlyV3vZYt0FNd8B8CJ7j7gRDeCuMt6HbAjADdsd16ACrrYlewVTp0T9CI0LbkZPYDojkvc1EK9xKafI7pPe+BWBApexFbqg+fJBPL2YLJuuCPcoNg7ieBQDKWxTPL2bpblknsZcrv7AYtZqJTl+ZqmjxHWMdz7lu/6nr9dfZtyea1mOMrbVuyw/jzMsahvRlyvdnT1EabVHPyJNs3HOxl5GeyHcEuCuWxufHIvcbujwlk6pgSr8y5OfTvhnovhbQynrY6mUF2xe1rz+xi1vie3tsuHtytNNetjw2S+5fNLJJy9W2JKKRytevmJmm4YHKzyOoy59XkljTT+t9qadJ3yem1TeTBLHdJ8nL0uN6bUdz5LyvUeo+FehaXpvTXmzTjm1OWVycW/fxXH6nzT4s6g9d8RanHLFKEcU2oRkt9v/AAz6LoerQxvszd/Y20tk6dbGH4m6J0rq+P8AEKKxayO8ZRiknz/c7c2PP3z08Dm0emx9NhnjlfzX+aLapfoe6/we0q6h0zrPzYKWLFL6Ku7/AEaPL6b4Y1WWePHLPCELcZPf+32PZdLw5+i6GWDRS+UpNuTh/qZbYk5rVrej4tHrcuaOSouVqL5TOjo+r43D5eR3Ua2a9jgzw9Q1eacu/uc3cu+XBqWkjpsMm5LudXRi125jnZM0fxspKNfV5Ozp39Caa/Q4mVReZtLydrS/8lbLg510jRKVmLPLk1t7GLUprczGqwNt6hUdmWpSxLZcHMVXZpilkVGmcV5XhzTvL+Vc88fuet6biwY+lZsGlywxLJhaXbktpuvR+7PJ5NMmmk62oGmw5sGS8U2r2aTr0N81z7j5xDHm6P1TKtXKE8iyNqW++/uVdX18NXnllSSpUtr9PQ+k63o+DqUf/c4oyl29vd5/kYF8L9N0sXHHgU6Srvp/fwb1y8PbrfBsc/Sei4lmSjl7bjzaVu93/Y5HWtEtXrp6qOTtbf5d6f8AE6WTLnlFR4SVJJUqMrw5ZPfgxenScYwdOShNR5aXk7UfqRkx6RRn3KuDVjTTOddIs7aQVEdO1uHjwRcZ82P6Xsjia7FafHB3srbTOXq4v0RqfU6+PF6/G1wceLrLbPQdUSUmeemqmztHj7ntu2pEdNCRtwX2Gj7l6Tkccuya8P1Vf2PedG12N6LEuZST5kttzw0cXc7TOx0uOKM/8/X6fTRrnKpv9Kin9zlY7cV6t9s8iyLyjfp3dI5WDJCcPpnHJHxON1L3VnR0k1+lGWnQWyRbGvJnjJMvT2RA7SvZDV9JWmMpbbhRilRNr4Amhk0luERxVLYldoV9RGttwqV5JZPT0JsRGqtgJbsZMEm/BUK3zt4FteRqfkDiyiJhsWvuTegBe4bBdB7giXsB1RJcC2RSTdIzTkkm2y7IzFlk22ioxZ8ndexwdSrm1X7HoMkYpXXkwZsEJSbS3CvG66MovZHKk3bPV9U08Y+DzmeKVqjcY6ZkxMkX6FsYU0XzUOxep0/jlinS6T8RJLi3zt/Y950bDi02mjDHF7ct+p5jpWNSyxdbWe10qxwxxUV5Od+O/wCcbYJpJPYkkNGWw2z8HJ6GWULYq0SlO/Bt7E1wNFV4Eox/gF3JprbcZ6eae+5sVWWWqo1OksJh03ak1S88Fko1aLIz2oZJNW2a1jGeWX5SbaRzdRnnmyUtkbNVV1sZFj3uiWt8xmljp7nX0zSxJbcHMmk57+p0MLSgjFbxok9+DHqZGu9uDJqOGDGdLu4Q8W4NITFJNlzj5pFKvgu8048L9DHhk4s62HLBx8FjnYXsjHlFc4wb48FmSpcFTi6NWsxVPHD0RTKCbf2L2VujDpFHy6F7EmXtCNbkCrYa9gNUC9iKSdNmDPGzZJ09zLkavnYs+n8eZ6vpqTaS4Z4/Lamz3HU5NtrxR4zWRSzM7x4/1aNO7x/ZAnNcD9PSnCcfRFOaPbka9zdnpxlX4p0b4KLSbSdryjlwdI2YcvCZzx25uPTdP1EVjjDbZeDsaPMk/ajymklvt6Hb0jez81sZsdJdemgrSdeC/HzTMGl1CilF2bU1dow0ulFB7VRX3odNVQKCSsLSZLVhVUiIaKaCyLgDZVF1QNvQnId/QIvjKvBG7ZEtvJKdlQ3cg3sK3QrnsA3crA2mLd7k8ATuoKaYvKIgG8CN7eg9qhJ7AZ8jMWR02bJvYyZaAw6jJt7mJZ6fJp1cWo3bODkzOEnyFUdSzOTd3R57PNOTo6uu1CyJ7fxOLkNRjojlXBO7uqwUSWySOjl/XoOkRj8pNep6fRyuCT9TyPRp/T2+56jSTqK+5jt34deLr0L4cGXE+6jZCLpHDXoMlsH9R1HYnaJQqW46SGUURx32ZZVwHLtYs5OQyg35J2Oi6k5ZMkWyp7RZrlHkyZfpsrUjLfdM6OH8qMeOPdK0b8cNgp/HJnywtM19jrgoyxpMiOcl2z5NcGnGjJlVTvYvxTSjvQK1RgmrRZTjug4F3R2rcv8Al7cCekquOauUWLNGSEliV7AWOkPKp4hJp2VNblvYNGC8k1cU0BwsvcUmBxoJihx2Kp7Ki+WxRk4KM2R1dmWaTNGV88GPI6Xgf1P44vV7jweN1Tbys9h1Fp8+55HU189+h3nt5P1aenJpyb22F1W+RtFsIfKwqS2tGWcu5nSz05JB7miD4MsdmW99LY5tSuxoMqi6Z6fQKDir8ng8OocJWeu6RqHqY0ml9Nu2jFdea9FCCjumbMM7dMwaeUXS7lXnc3KH+pGHRqcVWwYqo7FEZN+S+D2oIK5GVeRUtxr/AJEDEb2tkStfoB+hVFX4GoVIIRqYVTRKD4KhZIraosd+oJb7X4ARNUHYHbXJGBFQKC/0F71v9gGRXOaugSnsZ5zrdgHLNKJz8mRN7MbLqIt0znarUdiuKQDa3Ilhf1JPweczzTvc0ajXPJBRkuLONnzyRYaz6qaT5MEnfBdkffdlElXk1GOgsSckNRXkNObq9JyVPk9VpZtpL3PH9L2yLZHrdHwiWenT867mDxxybo+NjHpl9JqT4OL1Rojb4qi1RKYt0vuXQ35I0ZR+wXEZKlsSttwpEqZKsdRsdRVDDWacKTfKOPqMn+Y1Xk7+ZduGTODkx982zUNHT05HX0mJ5JqKq2cRKcHsdfR5pRppruRUtdjPofl4e+47co4uoXK2Oln6hkyYXGVe5yNRP9iVOWHLjbfCK5OUF4N8cTkivNgfY3Qarf0qUckG2la2Ojkgl43OF0p/LyzTSpnceVSoMqXj814FcEaklJCvEr4GGsk4OtmVRg1J2zZOFcIplsTF0El59BJUOt9xJr2AqkZstepfPbwZslb7BKyZdjFmklybcqTTOVqZtbIsjFcjqk0k/seVyPuy3+h6LqHfkdVb8I4mbSzxzTa53O3Dzfo058kXhUV4SMVpglJi2dbXEzaArbByhoLc5VqH7aVm3QZMnzaj/wBPj9TPJLsY3T9VHBqVKVvxSM2Ny+30PpGlyOClJS3VqzrwjJKnZh6Jq1m08Eu6+2+fB1JSV3vuc67q4xpl8CtU3sWwiA6Xmgv24CqUWiKmQRJ2HsIhvYBUqYbZKJS9So2J2iMCCEChWh3wBvYorYlruDJuxWne1ACT25oqT3q7HmnXgoeRR55Avq0ZNVUaVjyyS7bXFHE12qywyK1tQG6ekjLE8ndVK/uea1WdpuLTOktXkliSb2rg5eqz4WrtXv4KOTmk7sxZJJp2y7U54yX0s5/1PllxnQm1ZVJWPNA2SNyM1W9iqUXKRdKmWYoRe7Nxzq7QQcZps9VobaS5PN6dJTSR6TpjTpGe3T867mCaW1bG2E06MEFT8GrF4dHCvVG2DTLkZoNF8WiNrL3LEVJr1LFJeBFWQjbGm+0WM6RXPI2VlVqcz+W40c/DFOTNmb6osxQ+iZWsc7rnUYaCMIRjH5k3SsPQ+rTzqay40mnXk1dW6Xh6lp18yMe+LtTSVrn2MOm6fHTStSt3fC/sEx3fm9z34s4vWdTnhHt03Ym2rb9PTg3YnS39SjPgWWfHLCZXN0PxXnwahYNZgU4TdRnCO63XoepcoZMKa4aumjzeXoeLPqFkn9NVXalymdaTcIOMfP8AAjWLcMUsjcTdF00c/Rq27R0I8BK24ckfOxtnGDjtRxlNp+xrx5XJeSs4fIqbMs43e3g0Nt3exVLcis9UJJl0kiicdwKMr2Ms3Zoyx5+xQ1QGfIrjwcbVbSZ2sqqNnB1mRfMe5eWOmbS4seXWRjN1Hz6j/EWhgoYsmDHUe19zbXo+P4GjpGgya3VuUJJKC7nuuAfFeHJpI48dv6k73XO525uOHU9PC5pJZJJcWItxs8f8yX3JCNI04GS2DHZkSIrsxWoM5vgXFh+blSjyyS2V0WaTFOeaMod30yV9pmtT69Z0bNqtLnh3PJGKhTVc8/w4Pa9/dFbvdeTzuonCEMc5cqC55O7o383TwmnaozY7xrxRLU0hYxpc7kat8mVWKmMvcSC82WVfkjIrYFqqJW3IP1Ko2rBZGDYI2+bJYUq3sjdhAbF54HddvuJLYAV7iS/MWNCNWAtWZ9RgTj3J/oaaaJ3JsQcR6nstNNfc52tzLOlwqOzrtJLK12tI4eq0WaDSSb90UcbW6zJgg1Dymeanq8sn9U7aPVdY6dnwdOlqpRl2cXR427mzUZ6MpNPdheWiOOxVJGmbUnluWwqbYGtyeCxm1auCzHJLYpTpbj4Ep5Urous5tdjp2KM7lJHX0DjHUxilyzHj0stNgXlvZe4mHV/JzRk067uSV25mPYxq1XlWaIOjFoMsc+lhkTXhfwNkVucq9EaIv7FqopjwWRWxltYn6FsKaKoKixOiKtaQk9kH5iSKZybBFU5WzPkxWy9oH6F1rGXtmnV7FkcNl/anzyW4sd1t5KihaZDx06UeDV2UBx2CRinhbAsK8mtw+krcCVqlhDs4NESpR9yyOyDNW9qf9x1a43ETHT2Kh3Irb3foS9xW0AsiuRZsVz5CKJozZNmapmeauwjJqHWJ/Y8zqPqyPfk9BrZVCS8tHm8sck86hDmWyReWOnf+HH+H+ZJPeUa3f/c43xxq82XXYt2o9jtXs93Xk7+TpuTQabFunk7bkl4PKdabyZk8m8qrc6uXU9POSj3NtryNiipOjRqVGGPYz6S3lLrji+WGo8Gftps252kqKowT3JVjG43Juv4Hsek6fTabpMFLGpZJbuTir5v0POQxR+Ym1wb8WoyZGsWNSk+EopujFdOY7mRfie3HG0qq1ueu0uGODTYoR7vpiufLOf0vpePTYFPJJ/Nkl9D/ANJ1Iz3oza6GsP7hq+B1FbIhQT9B1XqwdvgKjQQHfqTdcsZxAo2FFK+WHtXqBLYNBGpsF0QG1hEb3BJ7/oRgbAPKIuQJ7hezTQQG+UJSDLbdoHcFVzW+5lmlPIl6GrJNONGOXLd0DXD+PNStN8M48cZJTyydJef90z5riTbXn3PYfHuVylpsUcvdGKTaT4543PIYW1Ler9jXLHa+qVFMqNTi2roz5FTOjFVVuChkR0WM0vg06BOWsxRXmSVXzuvf3KaW5R3NTTvhp7kpL7fXMXS8efTYpTx2m1e73uq87HD6v0aGCUcsFtxz/Q5vw38bZum6f8Fq8eOWK7jJQk2uP/l7DdQ+OHrZwxfKgsSdOXY01/8A6ZNeidR2ul5Pl4FBy2T3pex2Mcro81o8l9sotNPfY7+nlcVujFdea3RVodbfuVxY7ZhtYmMmipMPcRqHbFfqLe4JSVfqFRsAtp7hcko2E06oux5Ixe7MTyxSuxJZo1dmovja6s5xauypZI8GPFlWTayylT3NE4rRLJGiqc4mPJlUXyKtRFx3JWvCtvcrC5pMxwzRaLqtGWby1RyJ0Wd6ObLJ2clmLP3Blucr4FsrU0Tu+5FWN78CS5CnfBKKyqkrRnybX9jRPgzz4ZUcrXcX4OPg1ul0etWXPKlBN/f25R2dXHv7l7HgevSgtY4Rkm4/2NyOX6dY+haz4k6Vm07eLL3tx7k+3j2/geM6lr8WozJ42/e1R5lLub2W5owuSlcmbkcL3rXql3Y0Tp+P6m2DLLuVBwtwj6FxLTyi8uqWOLXdJ0rdF2PEns2jHBOU23zvX9DXGag6vbwCJ2PvpHW+GtM11ZzyOoqLpVyzBgj3zt8HcwKMILt5rlGOo6cvSLUS+bUXSfsaoydrc4mizSk93bOrhm73ZzdW5Nlik65YmP6uS1UgyMX7jJ2uQfYNX5IA15sL24fgleANeoDfqS/cG1EtFGvhCDOuRW1uyoST3BvYbt0GX08EAryS/UjZH/QqFk7E33GZW3QUsla4MmRNP0LpzaMWozSjJPZ14IPK/Gemjhx4Mzk2pKl7c+542E0pfqfRviPH/wAR6LLAku6NyVc+fc+au1Jp3adOzXLPTpQyJ4zHldyZMc9hZHRzpFYy5AkCVrgsZOlZVLHubdHjeQTVYnjnVGsRTDFFq2ynLFRnS4aNCaSM+Zrv/QlmJOnsuhZ3n6bhlKFTUnF+6R6XSNfLivPk8J8NahRzy08pV3JON+vk9rpXVWjn1Hq/K+nWg9i1LdGfG7SL0zk7wz2RW37hk354BRGxuomaWVKRpf5Dn58Ep8OixFmXqWDFHtk1f3fo/b7GHL1Pv7lGqv1ZytdpM3zXW6vmxcWkyLlmm+I6K1ba3rkb8R3f+TNHA9i6OFJe4emQ61Hy+PX1Flrci48+4Hii27FWNXSV/Y1F9C9S3yVvUOy14VXDEeBejC+lUtdLH+X+YJfEerwQl8rHj7vDk3/caWnxtW0J+Cg3tEy5d8s+n6v1HqOolHLU5Um1Daq28nf0ePPFR774XLLtDCOOFY8fa6W/qdBLulbW79TNcLMLFOgp0yykthXElFkHfqMIqqg2lsIzSTVoy5YvhGqT2M2VtKzTLma68GHJkqTqPC5PmWvnLLrMuSX5py/gfQ/iPWrS9KnJO5PxXj/dnzfJNzyNy5OnLzftUj9i2KKovg0xVo7cx5ztOrHw/XsluDJLtgkLp5OMuSVYtlHsYjyfUX5E2rKOzuJWo1Yc6j9zoYuoxSp/qzjQg09yyKad2c66SvoXT9PjlpVnjJONK2a8bTvtdngMHVNZp04488oxaqqT/odrQ/Eerx/MhlanBxpNxSfn0Riusr2eLZV5L43e5h0GaOrxKUZq6txvdGvdediItjsN3KiuLv3DaAsuwN+4LfhgbYErzZCINAak/USb8DSaFe/gqFh7hkrBaTCwIkK3vVDPcDjuBTOaTewlpoOWNbmeWRRsCZWlE5+aUbLM2XZ8HN1GVq9zNrUizLkSTrmmv4M8T1bpy/EvLB7O2z0mTUc72crVpzRny9tXnY8+sXaiuUDbOG9UZ5KtjtzdcOucUwW9Fixd3giW6NUI1Hg6yORtJWF7g1s1klaKp5KdIolld7m2akofTZmnjtm+FTxMxTfbKiWJB0eX5GqxScHOprb/AGj6dpMcZaeGWKqL5SvZ/wC2fKZq2ew+DOozyXoMtSSl3Qd7u6OXU12/O56e2xyX2L4vb9TLCopWqZoj6HKx6+ase5O1kYysy3pa2Kcq9i+XBS97LFczU4bTd+eDEoTg+HR2pQt7kWnxzpNFb5uOTGe5q0+D8RdOkaZ9NhH6ot2ItLlwq4N8iOvP6h/wrLlfbjlvwbtH8EajUpz1WtWNWnGMYKT/AISMENTr9PPvxylF3ey5NM/iT4hnBx/EqG6pxi72v/5G45999X4v6j0LH06Erz9z7mknGv6nDyJptL+B0Jx1uvySy6jNkySlbuUuOR1oVW9t/cWxrnuye3Khppz3p7mzFpq5RvhiUFVDNK9kc9S96TFBR9TVH7lUYr3LFsSuX1ZQrW9BTv1J5AjQrQzf3Ek9yxm0s3SMmaTf03u9i7Lkr1OZ1LWQ0mnyZ8l9qWy4tm+Yx1cjynxf1KGRQ0Me6Vbyfc6dHlIx7pUv0NGs1E9ZrMmaT/M9l6GvDoXGKyN7pcHbnnXj761hWOpGzAknu9inK6k0kHHa3Z0kxzW513vYiw1CwxanGvJYn2x3FWGhK4VbJ29u6ZIvaxfm26OddIPnkshFvgpkmNim4zOdalW9jU1Z0tNGMpcrZfuY95mvR4n3bszW+XWw5p6f6otrbwd/p3UJ6lRi3vW5xJ6Jy0rlGW6R0Ph1yxvJDI09ttjLo78brkdce5WpW+R1JoIZJk/sHdkvYAXS5J3e4HbXsDt/+QRokxrtCy5IVB7N7ZJqv2I23RJJtUBEk1dA8k3Sol+oCzj3JnO1OJ06Oi3RVkj3LjYaPO53KLal6GHM7R6HPpozXC4ObqtB2xtNGem+a4WRb8mbKk1TNWqThIxTlaOX9dZZjFmgkc+dNujo5t7OZlXbLk78OH6WB/qRr2WPd+DLB7hy5Wo0d489UTl9XJRN78lkmVSNVhs0s7i0VZ41LgbT/TG2TI+52y/xnWVo0dM1sun9S0+oi2lGa7q8qyiXBXuntyYrcuPrGmz49Tix5sM3kjJW/b1NnfJZEmfOfhfqq0XUMenyKbxZp091Sv8A8H0eXb9LjxL8re1nLqPXx3saFOkGOVdyszxlcbbGil/E5V0lX5HatMovwOv1Eku7jYNwOR4rcrSaZdBb8DWjpOhuUHtsaEdxpFThbD8tNGjtTCoeaNaqiKcdhu1lrhQK2JWbVDh9wdtF3aLJEFf7hXuRoKZA8QPZi9zRHIsSjYje7A5FMptRbs3GdDIrlS8nhPjLqvz9Wun4+7sgotz4v2PQdQ184xyY4tqVbbfb2PDdQjPJqH3u5OtzfLj+vXpk0sU5qUuDfqNS0qT2qgYMChjX2M2qVNHfn1HkpcKWXMlbOjqcEMWH3o5eGXY7L82plOFXsXRVHJ2y5LZZe6NGJvfkdS2W5nVdDHNKNWUTl2y2K4z9yS3RKsq/HlukzTHtTTaOfGfbI1Y5KVMxY3HUxRTSZtxqKX0yV0ZsaUsKitmNiwThK3KznXWO9pMs3jpv6aOroYJTcqS2OPo8jcEmj0Gl7fl7fsZaaE2mXRn7lClfBbH9CItUrYZMRSphctiqF0Tv9hWwWBuq3uRquUHuXoCT3KyNJ+APZ8B9AyogRxsWq9B7QrAWXHBW3syxtdpSnyBTPy1Rz9XmqLVHUkk4HK16ik9/BOiV57VyUpMwSSo36mP1GKdU0c8dJWHM0kzl5/qmdTPTi0c2eNts6cVjuKorcXMmkWqFMTUcI7xwsZmxbVojdImGDy5VH1ZrWLGzHCsViSVo1auCxY4wXNGRp9uxusYzS5YtWWyXli0TNVXvGSd01uvue3+G/iKWX5Ok1knJqVRbbqr+x4qasWD+XkjOvqi7TM9R046fYpScXX82PHJ9KPJfCvxLiztaDWqUMndcJ2qlxseq2SXa4tVynZw6nt6uOlqkDuS8lSmiKXctkZx1XKmy+PoZYM049+SLq5Rf8SyKp7iQ+xahFPCJYoqqDCNodQo1GbVUooqao0SSXkpk0KmqhZUO+LKZz2MqVsFlcp2xHkXqMNWSkvUVSryVSyJrkT5tGsRdOfbFt7HK6hrfk4pOMrb4SH1vUFjhJxbcq4OO4y1s7XnyzUYoY8ctU5ZG265s4WuUZ62SiqS2Payxww6VwSS+mtkeS1GJfipUt7N8uXcZ3jaRztY6aOzNPtOVrovtvyddcLGFMEpBjBtCyVBkr5DYAmVMnuOm2VodAgvkvxZOyrKUrHjHcy1K6uDM21TOnp87xZYzyNuKXhHD030yTOos1qq2ozY689PV6fJo9ZFfIdyrdVTNeOU8b7Tz2jfysay4nUvY6ul6hLLkcMvanVp/0MOjsY3f3Lop+pkwzbj9LTS4ZrUnJEQ1PbcZWIrGb2oKjcV5F70BihNdKqI0Ne5JUlbRUJfsRv09CWmK5U6AlgdeordsFgDI1RWpRUR5bpmaU+24tbMBlnx7pyS87sx62EZr6Wr9LKNZoe9SnCSTa82eN61HX48tRlleO0rjv77bExZcdbVJRTOXOS7tzmafS67PUljyUue5V/Q1fKljVS29iY1pcrttGeUC6QtWzfOMdVS4GLP+Z0dLLjbj9JzMmOadM6641mnGzb07B9fe+ChY22dbDj+VplXJuRzZtdP5mSNcLYSSSgvUSdubt+RckttmVFGUVKwze5Zhh3cCCiSYrVo0Zo9rKGhZp8aenwnDUQywbUou01s1+qPXdO61m+ZjxZ5zlBqm3K3wvVnlukPu1kMTdRk6bPQa3QfKnGWOq9Tl1y7/AJ9PSQ1CyN03Vj/NS8s83pc0sdK3ydDHn7l+pzx6JXXhmTfJsx5PQ4MM1Lc2YdZHZX5JjWu5CfBYpr1OfHMmuXuWwzRfky1rpQybbMLztcWYo5dtuCPLfBpGuWS/JVKVFSyKuSjJqEuZAaHk25M2XKle5RPVKPmzHm1DycOhiavnnSfO5W8rb5Mfe292TvZcTWiWZR8mXUa1qL7XyuUV5cnJmjB5pNcBNLGOTUZqbbb8nY0mmhgT5bdCaLTfK3bt/wDdG5Y/psIz6muxq2eZ1GCS1cmrps9RlX08nI1EY97kzXLPUcfUS7NjBq4qeFy8nR1sVK6Zzmri4t7UdY4dOdClaKsi3LXGsjQJwaVlc2ZjLgjRKIoodCxj6lsUiLBiixKiKPuM4siw8J9rNmm1cFP/ADL7fY5zdCSm1Fp3wZrUr6Li6c8eCGXG4yhON7NM5uqjJNtbHm+mfEXUOm5O3FlbwNdsscle3se4w/htbgjPDkjOckm4+Y7GK6y6HQ+s3P8AC6hRiv8ATN7JfxO9GTlkuLTXsecz/DmpzaXJqNPKDcV9UHHevvZf0PrKxJ6bPFtRjUZ9y2f3MtPRU+fUjK45fmK0thm9r9ggSFpeob7kKVHUjzdDSaaFvcgEpVwI1b/QZgapgVuKvgDXhDPklbgInQstOs1vjYM00Z8+peKFLjy/QAvRd20pNmPUYNLgbuKk/uNLJ2aeWbJPtglbfJ5nq/W9Hih24ZvJKS/6SjRr9RhjtjVX4POZ8ltlMuorJzHtv+BVPPGSsWGj3peQfMSklaMeXPTZXHNvyXmM3p2e+PZexzs+SLmIszkuSqe/k7SOXVacLhs2tzVmzR+VS9DFCDhDvfBny50/JpgZ5Eimea1sVSm2gLdE0GLc5nW0WKKW7Odhj2u2i96hxezLEWaxx76XoYmth5zcnbdit2ixL9WaHN8jXYZ+k1/v+J9DzxjqNPDJVKSUkfNIyrIt63T/AIn0jp/Zm6RpZRm5fSk2+eDl07cMDw+iJG4UjbLE1tvZVPF5OevRCp2PFVumBY9v1Ck09uA00Q1M0kvcsjqZlKXsWRW3BnFlaoa1w5sb8b3evJmSVDxUVyXDTvVSf5W+RZSnNbsjUVwDvoFpHCfqDtZZ3NitNhKrfFCetl3Y2grE+QjFKLlJJeTXptPV2XY8NyTa8m3Hh5oETFjpFjVKi2MBZcuiKyZYbPg5GuxuEXKjuyT34Zl1mGOTTZG2l2q3+5YnUeOz5Fbs5mfP2yaXkfXajt1M43w6ME7lO7OnNcOoshBznd7FmeC7UiRmowoVXN82dMcmScWvAE/U2TjFp2ZJxabF9CWN3NMqXI1mBrxTTaTNahHtb2ObB7l6m0uR/W4GRVNivdElNC91msZ1XKEk7NGh6nren6yGfT5pLtVOL3TRU8njwI2jnedalsfSOn/4gaLMseHPgcJ0rcYflfHqdLrPQs6xR6lpcacM8e5KLdTXt77cHx+eNSTTSa43PS/DHxxr/hqXyJ44avp7VPFkvbza/Uk5anb3/Rtf8/BHDmioygvzHQlvFtLY84uvdH63BZNG3iyyX1Y8j3/drfj/AMne6Z3PRK94q9/HJMblV3Lu9g/V6ot7e6XAOwiuiuRgcMPhkAW4GmStwN77AKMuOAU2MqUdwKclvZI5vV80MOgmoTj81Lz4/Uz9d6hngni09RvZtHBzaPNPF3ybb+/JZErzur1mXJBwm1273T2LOm9Mw6uP+dP5cE/9K3aPTdF+AM/VYZNXrXkw6dflanFp/dch6v8ACy6Tp5rSZpSpcTZpI4uu6V07S6ZvFln3Ljuldnn8su20jo59PPtvJJtr1ZydRGnsxDpRJ9z5DHG5ukCEXZrwJQkpS8Fjni96WOHTq39TWxXHBcXKT2ofNmWaUYxeyE12dYtOsUfzSNxKy6jVf6I8GRy8A+5ORb7YPGDkWdqihYukBybZr1EXRewsuQd1IXusqfwWTchPBrEVNfX9z6B8NZnk6Njjv9Fp/seAfJ7b4Saj0yaj3X3O0cq7cfXaeO3tZVPG1saornYE4W+DjXqjJDGWxxDdlPgthvtuNaIsVIDxO+Ga1Djd8lix35YGFY3XkPbJ+DesK9yfJ3CMHy5e4Vjb5N/yUT5SXlgrJHE0h1jNSgTsogzfLpBWN0aOz1HhGyCrHje23k1Rj28hhAtjG9wpK8gkvH6ltchhjct1/wCAjm6zJHBjttJnJm55ceTtnH6k07LOs6n8RrVjxuscVTjXn1KNZ+K0XTZ5od3akt6+3/c1ynTxWfp2SGfJ3ST+qzPkx/LYcvUNRLJKWSXdN82Z3OWR7s68vN1TynsCGRxkSGPue7Lp6eMVdmvGsKXLyJJ2M9kIWheGFkasii2ZQ8G7LXshIxUdwylaKuq5S3ApbkbF8iUNJ7ihdEZfRqRdojin5AtmHcek3COL54fquUek6P8AGOs6Xp46fJhxZsMY1+W2zz1MnaYsanWPrHQPivpvVaxzaw5e12u1rffx9kdu1/1I+IaXUy0WqjqIRUpQ/wBLez/3Z63/ANey/wD4WH/9THi6Tt9O23JtTZGSKdMw6I2K+QtewGwFtCzt7IZxVi2k/AkRwNW8fznGX5/UP4KTwdzTqrp7C9UWOOrbgqbVnWhLTvRYscd32LuSbZVTp2rlj0bxyrtirq/+x5/q2o/Haly7tqrtVV/I6U/8rFOtr4TODlj25JNuvIHL12FqLSo87nx/Uzv63O/mOmmq5ONqF5NMVjiqH76REhJo1GLVuna722yjW5Fkmq8BhKtrKMiuRtm1W40i3T6eWaaUUytq0aNJn+Q7Entn+L82jeOCvkxNdsqL8+tnlly69ChvudmrYmUXuiJEGSpFkSpToj2iNaoSTNWyRIXHjllydkV9T4Pa9C0OTR44ueS+7mK/Q8v0vE5auM/ET02nzzWqhHuainvt9jlfjrxfb0UeVRakqK8UbSdMv7DhXqimULfBIxpl3aFw29yNxIotiJBepbFevqFMkGkFIbtImEoEuSxppbC073GhUmR3xuWURRC+lai2+S+EKJGO5fCJELGLstS/YZRC1tsFUSdXuNPI46XJ23bjSZJQp2VZW+ySRUecx4nPUuUnzydXrSjD4c1M2otRitnC/wChn7ezKyfE+aUPgzVSjbk3GKSit+HzXsajPXx8pnTyN1Sb4GpJFcPypPmh5J8nfj48fX0E3fJbFSkt2UPuvgKnNcGtZpsiorSHpy3YrVImxViiq3AqTKnJg3AvbK5PcVOkH7kwLYVyGkB7CQRugJkbQK3KGChQphDk8i2FMuBqT5B2IlhtksNr78q3YPmJAbA4Js8z1BKVvYVui1pLZDLT5Ms6UdgKW0/SwLHLmvB1odEn8l5syeOEVvKWyPP9d+Pvhv4bx5MOLJj12uSXbFRl2p+b29C+NZ82bV9Oy6jM5LHaS3KNY9H0zTfM1mqhi7Y32JOUmv5HiOufHnVOsKa08cOlhK77Yu2rPKSjLLkc805ZJvbuk3/c1OKXuPc9Q+LMOeEloqcHGk5Yzh6nrWozydSUU41sjm49sdCvZmvFjz1qhqJv8zsTNPusrUkkV5Ju9iYWjCdy7S7JiqFoxuTg78mxZ1PDTW9FjNYHak9yO6JJ7kNRKC9wPkerA0aQlDKO5KGRZGbUqgvjYj5IaiVKYs/A+5XPl/Ynacu10PRajV5VDCrbfLkkl/E6v4HUabUxeRJeVUrtE6FCen0MM0U1KS9f1R0MuX5uVSldrY49O/E/rq6SbcIvdepsjTexh0TTxpUb4UjnXoh1FEcBobqizs2X3MukVKPihox3LO3cCQUVEfsYYosUb4Aq7QOBdVcgavggRRrawqLLEkWRxp0BXjg2y9RSYyhtaGhF3ZNAolUyxpXyK1vuBTJW3uUzjV2zU2rKnvL2NI5OXE+5s4/xb2f+mssHJfMlKPanHblc7Hp9XhSxSndJbtnjvjHHLJ0mE4vvhauNe/O69LNcsdX08ClVbVsWrcSPO63ZbDFKX2O/Hx5aKcFvIsjLFJ1sUZIdraK4VGW5qMt/4WWRWlsZcsO3ajYup9mLsilxRjyZfmWxcFD5Fb3I7sBEEIFwE0JZLJsTYqaDV8EphIjIlMnkLYLCoxkLYyCIwWNaZKQV96clY9Nx2TpL0Jj08ss/y37eovxB8UdG+DNI56lx1OvUko4ISjz5T3s88mvResdLRdKz6j61idR5ctl/E5Hxh8Y9O+EdA4aXUYNR1LIqjj2fb/BnyPq3xr17rWty55aqekw5J9ywYmnXHk4k5TzZfm5ZfMy/9cuTc5cr1XW6r8Xdf63kyvU6+WPDkr/JxqK/ioo4kcUYN1FN3dss7He/8wpG/Cs3o2NUgU+66Gi62DtZrGdNGVIDe5AWTpqD3bCSYXwI2c2xdMCb4F3ImajKNOx4rbcRvc6eHSwz6RyUqo1EqnDp++NpWU58Tx8qjVp8qwy7WUa7UKTpI1/EY73HT2K0WIkZokJQTcQW9hcK788ItPeSXAJvY6Xw1pPxnX9PjbpJOVepjq7W+Y9hhw9mgwQrtUYLYRQTao6WXGkpRTtLZfoY8UEpOzl1Xo4jVpo9qRthLZGbEr4Llskc67SNWN2zQtzLhkbIfcy2btQOz2LoxdWMokVUobbDwVItUQqFBFfbaAouy9R2CoWwKoQ35NEYrwRQa9B4oCU0gV4HaArRAiTX2BPbyNORVJ+bAR/coyycb3LsmSME3svU5mo1kcsu2DfNGkYusyzT0soRyyV+iX9jwPV9XrZY1hyZZvFt9LSXH6H05aeOoxds5JX5PDfHXT3op4HGcckJSrbZ8f8Ak1y5d15TFT3ZrhmjGLMCXamRN+p6PzeWrsuTubKGg7gZuxnQCnSAEmLqXsCiUQuIAaIFBLUSC4g3Qe7wArIFihRYAgZMQSWQgBUhrFSG2GNPuvxf8U6b4O6DOEVjydUzSWPHjk2uxOt9l/U+E59RqNZq8ut1mWeTUZZOTnKTbT/c09Y6ln6513VdS1U5ZJTm+zu4UfGxkUbRyk/katNG3/5DW5I7BO0kY0NyIhLKg8AsDZCUHuBbIBvczWoN7hq2BU6Luz6bozi6paA0WS2ZW9yKWStbF+HNLFjcb5KLDyiz0lWSyXv5GjjjlW73Ke1slSi7V2WaiSwuMvYZbFqyd0alyVvk1GagGEl0ikJLg9Z8BaPFLX5tdNy/yoOKVbI8mz6B/h/iw5ukaiHzP82c5fT7KjnXXnm11ckP8x7tmbLhp2rTOllxdmSt3Tp+wHBOLrk516JGfS0opN72aJR2Oe1OGXdvY6WPJHJiVOzm6QuOXa9zdjlaRzpJqSNeF8bkadDG36+S2Kvcox328miLsirF9wte4q5LPACb+oy2YLDs9whlzyOqXkCqrClsBG9+QP8AQNbXYvZJ735ArldleSUYptvb1LMtxUqabOLrIa3UZJQx7JU/q2in7g0mp1qyZPkxalbpJcs6PSOkXn/EZu2X/TGk/Q06Lp2j6fghrNZOHfspTmml+i8nE+Iv8RtL0xvT9JxZJZW/+Y0vQ1OWbtep6jh0eh0qz6uePDTX0u1fHofIvjjruHqetxYtMofKxNLuTvjz9/T/AHWHqnxB1brUpT1upl2vjGuEcScEtlVefc6SOXfqETuPi/YnCAmkw8nbmPLUAEBtmoSgk8BQAEhEgBQAgFgBYS4ajVgoIGRQCRILToIAQBRAUQhKYXCqCpKKSj7Kh6dcBi6XAbtE4haC5IQFm0RgDYAAyEYSYiAfIQCxdDdUdHRQ+d9D9DBWxZptXPTZU09q32MNRo1ukeGV+DFVHZz58epwJpvuo5bjuTF1VVkp+Czs3LIpR54NSJqmLcfBJzTXBfkcK2MzW5fFEQQBLEEVsjBuFBptm/pvVdX0jPHUaSSUo39LSp/7pGHyWxh3Lc5du35yvoPSfjjRdU7MfUsM8OdX9cKS/wC56HHp46iKlppfMtJ7bs+PfJuSN+i6v1TpmSMtHrMmJqSf33Odr1c/Pb6e9C5JqS3fmjkfMy6XUODuKukmjm9P/wARNVpVF6/H+Jbf1fRxxxvydN/FPQ+p6dZe6WLN5jOKTX62Zxc/6aYZVl3Ts2YHx7nK0Ot6dmS/99ijLu7e1s72lh0+b/8AuGmvu7a7+TKr8T2L4Mvw6LDkl249Vp5tOv8AmL+5tj01tJxlilbq1NVfoXE1z1wNbfk6a6Xkp/SqXNSRP+HPw8fv9a/uPGnk5dP/AGhlwzpT6fCDXfn00O7juzRV/wARfwemVKeu0Ud63zx/uXwqecYYpvgsimlumXy1PSNHCT1HU9IlF/V25Iyr+PscjWfG/wALaOf1aueTf/RCL8P0kvRDxN/8dL5Mv3G1Wow9N0/zs7VRfFrfa/6Hj9d/irpINrpeK+3JtKWDlf8A7s8h1X4y6v1mUo55wjictlFNbb+/uTFk329Pn+NsMuodksLjp+6k1vW/ND9Q/wAR9J06P/03RLNm7lUpx49a3r3Pnsu7JHdtNlccVehZMbzZ8bupdd6h1zLKerkoxcu5Qikkv2MPyrd1V7l2OKSqgyrwaan55PaqSUY7GPI7kzXldRMM3cmdOHm/eyQCeSAb3O0eLTEFVhKlQgAkAYBgUAEElEBUonCJRHwBAB5IBEHlAJZAaI0SwmVRBBYLAe1QCLiwM1yiMXcJCiACSwAFEIACEIAUK4ptBIzNmkpoycVs2Dvd7gATxXViybEc78lbRPBQbsgAo0ggDsQAeADeANEWJFWzTBbFEOdjRHgx09P5CthnvWwFyHwcrHqzS/LtEWNLjlcDrgJlfFS8btbtU+U6IlKHE5ppbOM36mhccBpehDwqqGp1mHbDrNTB3yssv355LsXVur4ZqUepap1K0nmnV3y9+SKvQNL0Gng0Q+JOv44VHqupr0+bLzz5KP8Ai3V5STfUtV+Zy2yz58eRaXoMoqh7X/NM+r6hqYxU9bqElbSWWXr62Utaif8AzNXqZPm3nm3/ADL0GmX2v+UZvlZH/wDlzP75ZO/4+43yO5fUm2/Lb/v9zQm0hlLbcNT84zx06u3yWrGkFNthLjU5kR16Ar2CluR8kXAFocWTosL8Z8/5TC/zGzPK0Y3uzrw+d/yEsBKCjrHkFIjRLBZRCeCEIVCBABCeSE8gQHkJAiAIyBYhAohDUJ4IB2QS6AQgaWsVkbAaZEHkZcAsAAYQPkAJ7E3CuA7EAVhDdAsCEohAgE2J5JW4AfJBqAFCghAUQi5CFJeWwIBhQHyS/Ce6bGqZfEqgi1NWceq9v5QyGAqZGjLuYgESyNQyY1iLcZLYzW4ZBAhluGvQLkamDyNapBdidoaJaJ3BRSG7RVNIHeioZRDSK3k9wd/kumreAN0VKbbfoVyyU6bJS2Ro7irI+StZqrdb8All7434HLHXcxRlkUeR8krkIzvxHzP162oyEolHRxQhCFEIQlMgDJuNRKYNhSDdrJ2sqUu4UHtYe1+gw0tEphadgUWxghKD2MKhsTDS8BSsLSGikTFVtNMBc+31F+n1FCPkFbhJQiBZLDQGFgWQiRAJYQeQgwSABe4BJYrbB3MBwiKTrgZMIIAvkBVEgAgQJEiMqA2C0FiNbk6an1og1SLFRZ03Rx1Slc0mvUScOzK4Lw6OHT2fnTR2YWRBaMPQCAM1sKRqYKsa2SFNDduxGkW4UUyydroeE7CSrANDXWwLDehv6gb9xtijNkUWEtxYnfkdIoi5JJ9rp8F0HcdwIwLfYLVkiqKQ3a0rMuXtlkUZOle9Gru5RmyRt3f8DNTv47nVOmaLB0rDl0uZPLa7n33tu+Dz8047N8bFkHP5bgn9PoVZNi8y68/6eopZCXsQ9UeHq7RIAO5pmowcBA+SoiY1iJOw+AlhlP2B3gRKGkg94PmteCUCie1uD81+gXl9haA0PaejLJvwN8z0RWkEvtMM8jfgHcwUQLkB2S36kdg45Jqo2/UFsnJKZgWEsBDYlgu2QlOxgNEoZcAYA2J4AQgnKIkEgEYu41MFARIKW5AoIPgFbBA+CqhABKhkAFhCgxGr2GZFyS+yLNPknh7lGTVosj3OTb3bZVFF8Nzj1zXq/G6dWN7EUaD4OdseyT0GGHzs8MSdOTo19Q6c9Io9srTW79zFjbxZ45VzF2jVquoZdXFRyPj2Ic/FEKUedyzb1KYosa+mg3PjX03p2m12o7c00qV1srE6jo4aTVqGN3Gr3MkHLHNSi6afJZOc80++cnJvywTMRJfqQItEWQUIowWZSmu6KabQ62Fkkxi2Ozr+o6TN0+OLBGLl6KNUcmFUVwh2stWwkIjFsLF8FQRe1sHcNGVA/hX9CMuZ2zRmn9Jjk22b4jyfvfQEIkGj0R4URGRAfIRCEIUFE8ERLIgB3ImGygUB8jWSwFolDWK+QoUSgkCQCECRQA1YathUfUYFSoI9InaQIEgSgUSgkKagGH9QEQKJQSBUQGEDCUQBICoRECgJwBkZAqBATwBPJCJEKIwJBDGiBkWQluV8D41b9zHbt+N9tMWFixG5VHnr6HN9Ek0kLUkk3FpP2LcHZHUweVvsv6uf7nb6pm0+Xp0Y4uxu9muaGNTnY4UZJosVUVIaLcpKK3b8BTNbjbUVTbjPtez5LIy2CxPsDyEjdUDUA0xrI+AoILYEDkGo3YYY55X2w3foI15H0uslpcqkop7hm9ZSTwzxupppkhG0X59Q9RkcqoTuUYmpDr1GTNtsZy7LLukyp8nXmPnft1tQhPQh0edABsllAIQADJqgMhK2Am5LZCACw7kpECVLITYOwUCEZCmIQKWxCBbph3ZH9gkRFY1MCaD3EUhCELEEDIBlUUH9SEADIRk8ERABABCEIUEF7kB5IpiAQSgoBPBACS9gECANEC5GSGFM3sIsklPYerpCfkyKXlGe/jX59e3RzafNiwQyOLSasqg2+TTPq2TU6eGGUVsqbozpUzzdTH0vzoyx207S9SyLago+Adyqgd6Rm13mQXv4LdBlxabXwy5bcV4SsqTsDSuxpW7qeq0muywlhi4tKm2qsyqKSKlCnaLEykCe0TRoelarXxlKEPoW3c/Uy5F3RdGrp/VtVoIuEclx8JpVx9gW5fap45YsjxzVOLpoSW2zGlnyZcjyTdye7K5S2CWmTVOypzSfNL3Dgy4/xMI5mlBvds6vV9HosOjxzwSgsnpB33IjO+nNVS4YHjRTjnXJd3WtinN36FduxXknsyxmfK+S8sfp1kUt2KybkPRzHzu+toxk4tP38hlLuk3t+gpDbFQgQBEIQhACXsGg0FAlkpEpFEIGieQlCtwkAFS9yEogBIQlgQAWAJRIQFoijQGmMmAJAoNEJ4KoEIQIhCeSMKhCEImIQhAYBA3sAKgUAISoEBCqgGwgfJNMRbsdiRTssLENjruXc6V77BlTboVD1sWzVnqjjpbl8dzPFl0HsefuPf8Ah3/DSaRpxdM1WbD+IhjcoeN16X/QyTi57JmrS9X1el034eGT6Vxtx/uzlMej7VPY4unsGgKbm23yxuC2NwV9wS2FlLwuQ/IyvC8r/Kt27MkvsFIlICGQX1QoDW4wNwXFWTF3U/TwCClPtxt1G9i9VRXKO+2xKx4f109doNPg0MMmOTeRc77M5qtIaMptJSk3FeGK/pTNSaWeglOkZck7k0WzkZ3u7OnPLx/t3npKIBOiHePJiMhGQqCBsDAA1kAkGglSw2AhFQiIQAgCAohCBXIEIQKKBdEqyNB4IA0AL3AwJ4ABgM2q/9k=
Ε-mail: kontoni (at) uop (dot) gr
Τηλέφωνο: 2610-369-031
Γραφείο: Κτήριο Πολιτικών Μηχανικών, 1ος όροφος
Ώρες Γραφείου: https://eclass.uop.gr/modules/announcements/?course=CIVIL110 (Βλέπετε ΑΝΑΚΟΙΝΩΣΕΙΣ ανωτέρω ιστοσελίδας) - (Συνιστάται πρότερη επικοινωνία μέσω e-mail: kontoni@uop.gr)
Σύντομο Βιογραφικό Σημείωμα

Πανεπιστήμιο Πελοποννήσου 

Σχολή Μηχανικών

Τμήμα Πολιτικών Μηχανικών

Μ. Αλεξάνδρου 1, Κουκούλι, 26334 Πάτρα, Ελλάδα.

Ιστότοπος: https://www.uop.gr , https://civil.uop.gr

 

Δρ. Διονυσία-Πηνελόπη Ν. Κοντονή

Αναπληρώτριά Καθηγήτρια

E-mail: kontoni@uop.gr 

Skype: kontonid 

https://www.uop.gr/staff-member/kontoni

https://civil.uop.gr/staff-member/kontoni

https://eclass.uop.gr/modules/document/?course=CIVIL110 

https://gr.linkedin.com/in/denise-penelope-kontoni-b2906919

https://www.researchgate.net/profile/Denise_Penelope_Kontoni

https://orcid.org/0000-0003-4844-1094

https://www.scopus.com/authid/detail.uri?authorId=36965453100

https://scholar.google.com/citations?user=BZcMZJsAAAAJ&hl=el

 

ΣΥΝΤΟΜΟ ΒΙΟΓΡΑΦΙΚΟ


H Αναπλ. Καθηγήτρια Δρ. Διονυσία-Πηνελόπη Ν. Κοντονή  γεννήθηκε στην Ελλάδα και έχει ελληνική υπηκοότητα.

[Full name in English: Denise-Penelope N. Kontoni (Dionysia-Pinelopi N. Kontoni), Father’s first-name initial: N.]

Έλαβε το Δίπλωμα Πολιτικού Μηχανικού από το Πανεπιστήμιο Πατρών, Ελλάδα (Βαθμός Διπλώματος:άριστα, κατάταξη ).

Έλαβε το Διδακτορικό Δίπλωμα της στη Δυναμική των Κατασκευών (Διδάκτωρ Πολιτικός Μηχανικός) από το Πανεπιστήμιο Πατρών, Ελλάδα (Βαθμός:άριστα, Τίτλος Διδακτορικής Διατριβής: «Δυναμική Ελαστοπλαστική Ανάλυση με τη Μέθοδο των Συνοριακών Στοιχείων»).

Από 21-10-1998 ήταν Επίκουρη Καθηγήτρια και από 01-03-2002 έως 06-05-2019 Αναπληρώτρια Καθηγήτρια στο Τμήμα Πολιτικών Μηχανικών του Τεχνολογικού Εκπαιδευτικού Ιδρύματος Δυτικής Ελλάδας. Έχει διατελέσει και Πρόεδρος αυτού του Τμήματος.

Από 07-05-2019, είναι Αναπληρώτρια Καθηγήτρια στο Τμήμα Πολιτικών Μηχανικών του «Πανεπιστήμιου Πελοποννήσου», Ελλάδα, με ειδίκευση σε: Δυναμική Ανάλυση Κατασκευών & Σεισμική Μηχανική, Μέθοδος Πεπερασμένων Στοιχείων, Μέθοδος Συνοριακών Στοιχείων, Ανάλυση Κατασκευών με Η/Υ, και Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού. Είναι επίσης Συντονίστρια του Τμήματος για το πρόγραμμα Erasmus+.

Επίσης, διδάσκει επί 21 χρόνια σε Μεταπτυχιακά Προγράμματα Σπουδών του «Ελληνικού Ανοικτού Πανεπιστημίου», όπου και επιβλέπει Μεταπτυχιακές Διπλωματικές Εργασίες (ΜΔΕ). Έχει επιβλέψει με επιτυχία πολλές ΜΔΕ στα Μεταπτυχιακά Προγράμματα: «Σεισμική Μηχανική και Αντισεισμικές Κατασκευές», «Διαχείριση Τεχνικών Έργων» κ.λπ. 

Επίσης, διδάσκει επί 3 χρόνια στο Πρόγραμμα Μεταπτυχιακών Σπουδών με τίτλο «Προστασία Κατασκευών από Φυσικές Καταστροφές» του Τμήματος Πολιτικών Μηχανικών του Πανεπιστήμιου Πελοποννήσου.

Έχει διατελέσει και επίσης είναι μέλος συμβουλευτικών και εξεταστικών επιτροπών πολλών ΜΔΕ και Διδακτορικών Διατριβών. Επιβλέπει Διδακτορικές Διατριβές στο Τμήμα Πολιτικών Μηχανικών.

Είναι συγγραφέας διακοσίων (200) επιστημονικών άρθρων σε Διεθνή Επιστημονικά Περιοδικά με κριτές και σε Πρακτικά Διεθνών Συνεδρίων καθώς και σε Κεφάλαια Διεθνών Βιβλίων, τα οποία έχουν λάβει περισσότερες από 1110 Αναφορές (Citations) (Google Scholar). 

Ήταν η Επιστημονικός Υπεύθυνος ενός χρηματοδοτούμενου ερευνητικού προγράμματος και μέλος ερευνητικών ομάδων για άλλα αναπτυξιακά / ερευνητικά έργα.

Είναι κριτής / αξιολογήτρια (reviewer) σε πολλά διεθνή επιστημονικά περιοδικά (π.χ. CertificateofOutstandingContributioninReviewing” από “EngineeringStructures” - Elsevier), και έχει επίσης διατελέσει μέλος της Επιστημονικής Επιτροπής πολλών Διεθνών Συνεδρίων. Είναι ακαδημαϊκή επιμελήτρια (editor) και επισκέπτης ακαδημαϊκή επιμελήτρια(guesteditor) σε διεθνή επιστημονικά περιοδικά με κριτές.

Τα ερευνητικά της ενδιαφέροντα εστιάζονται σε: Δυναμική Ανάλυση Κατασκευών, Σεισμική Μηχανική, Μέθοδος Πεπερασμένων Στοιχείων (FEM), Μέθοδος Συνοριακών Στοιχείων (BEM), Αλληλεπίδραση Εδάφους-Κατασκευής, Έλεγχος Ταλαντώσεων Κατασκευών, Ανάλυση Κατασκευών με Η/Υ, Ελαστοδυναμική, Ελαστοπλαστικότητα, Εφαρμογές Τεχνητής Νοημοσύνης στην Επιστήμη του Πολιτικού Μηχανικού, Προγραμματισμός Η/Υ σε Εφαρμογές Πολιτικού Μηχανικού, κ.λπ.

Ξένες Γλώσσες: Ελληνικά (μητρική γλώσσα), Αγγλικά (άπταιστα), Γερμανικά (πολύ καλά), Περσικά (βασικά), Αραβικά (στοιχειωδώς). 

Διδάσκει τα παρακάτω μαθήματα:

Προπτυχιακά Μαθήματα:

  • Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού Ι (Θεωρία – 3ο Εξάμηνο). 
  • Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού ΙΙ (Θεωρία – 4ο Εξάμηνο). 
  • Δυναμική Ανάλυση Κατασκευών (Θεωρία – 6ο Εξάμηνο). 
  • Ανάλυση Κατασκευών με Η/Υ (Θεωρία – 7ο Εξάμηνο). 
  • Προχωρημένα Θέματα Πεπερασμένων Στοιχείων και Συνοριακών Στοιχείων (Θεωρία – 10ο Εξάμηνο). 

Μεταπτυχιακά Μαθήματα:

  • Ανάλυση Κατασκευών με Σύγχρονες Μεθόδους (Θεωρία). 
  • Προσομοίωση και Δυναμική Ανάλυση Κατασκευών με τη Μέθοδο των Πεπερασμένων Στοιχείων (Θεωρία). 
Short CV

SHORT CV: 

University of the Peloponnese

School of Engineering

Department of Civil Engineering

1 M. Alexandrou Str., Koukouli, GR-26334 Patras, Greece.

Website: https://www.uop.gr/en https://civil.uop.gr/en 

 

Dr. Denise-Penelope N. Kontoni

Associate Professor

Departmental Erasmus+ Coordinator

E-mail: kontoni@uop.gr 

Skype: kontonid 

https://www.uop.gr/en/staff-memberen/kontoni 

https://civil.uop.gr/en/staff-memberen/kontoni

https://eclass.uop.gr/modules/document/?course=CIVIL110

https://gr.linkedin.com/in/denise-penelope-kontoni-b2906919

https://www.researchgate.net/profile/Denise_Penelope_Kontoni

https://orcid.org/0000-0003-4844-1094

https://www.scopus.com/authid/detail.uri?authorId=36965453100

https://scholar.google.com/citations?user=BZcMZJsAAAAJ&hl=el

 

SHORT CV


Assoc. Professor Dr. Denise-Penelope N. Kontoni was born in Greece and has Greek nationality.

[Full name in Greek: Διονυσία-Πηνελόπη  Ν. Κοντονή (Dionysia-Pinelopi N. Kontoni), Father’s first-name initial: N.]

She received her Diploma in Civil Engineering from the University of Patras, Greece (Grade of Diploma: excellent, ranked 1st).

She received her Ph.D. in Structural Dynamics (Doctor of Civil Engineering) from the University of Patras, Greece (Grade: excellent, Ph.D. Thesis Title: “Dynamic Elastoplastic Analysis by the Boundary Element Method”).

From 21-10-1998 she was an Assistant Professor, and from 01-03-2002 until 06-05-2019 she was an Associate Professor  in the Department of Civil Engineering of the Technological Educational Institute of Western Greece, Greece. She has also served as Head of this Department.

Since 07-05-2019, she is an Associate Professor in the Department of Civil Engineering of the “University of the Peloponnese”, Greece, specializing in: Structural Dynamics & Earthquake Engineering, Finite Element Method (FEM), Boundary Element Method (BEM), Computer-Aided Structural Analysis, and Computer Programming and Computational Applications in Civil Engineering. She is also the Departmental Erasmus+ Coordinator. 

She has also been teaching for 21 years in the Postgraduate Programs of the Hellenic Open University, Greece, where she has also been supervising M.Sc. Theses. She has successfully supervised many M.Sc. Theses in the Postgraduate Programs: “Earthquake Engineering and Earthquake Resistant Structures”, “Engineering Construction Management”, etc. 

She has also been teaching for 3 years in the Postgraduate Program entitled “Protection of Structures from Natural Hazards” of the Department of Civil Engineering of the University of Peloponnese. 

She has also been a member of many M.Sc. and Ph.D. advisory and examining committees. She supervises Doctoral Dissertations (Ph.D. Theses) in the Department of Civil Engineering.

She is the author of two-hundred (200) Scientific Articles in refereed International Scientific Journals and in the Proceedings of International Conferences as well as in Chapters of International Books, which have received more than 1110 Citations (Google Scholar).

She was the principal investigator of a funded research project and a member of research groups for other research projects.

She is a reviewer in many international scientific journals (e.g., “Certificate of Outstanding Contribution in Reviewing” from “Engineering Structures” - Elsevier), and she has also been a member of the Scientific Committee of many International Conferences. She is editor and guest editor in refereed international scientific journals.

Her research interests are focused on: Dynamic Analysis of Structures / Structural Dynamics, Earthquake Engineering, Finite Element Method (FEM), Boundary Element Method (BEM), Soil-Structure Interaction, Structural Vibration Control, Computer-aided Structural Analysis, Elastodynamics, Elastoplasticity, Applications of Artificial Intelligence in Civil Engineering, Computer Programming in Civil Engineering Applications, etc.

Foreign Languages: Greek (native speaker), English (fluent), German (very good), Persian (basic), Arabic (elementary). 

She teaches the following courses:

Undergraduate Courses: 

  • Computer Programming and Computational Applications in Civil Engineering I (Lectures – 3rd Semester). 
  • Computer Programming and Computational Applications in Civil Engineering II (Lectures – 4th Semester). 
  • Dynamic Analysis of Structures (Lectures – 6th Semester). 
  • Computer–Aided Structural Analysis (Lectures – 7th Semester). 
  • Advanced Topics in Finite Elements and Boundary Elements (Lectures – 10th Semester). 

Postgraduate Courses:

  • Structural Analysis with Modern Methods (Lectures). 
  • Simulation and Dynamic Analysis of Structures with the Finite Element Method (Lectures). 
Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής στα Έργα Υποδομής [ ΦΕΚ 184/Ν.Π.Δ.Δ./14-10-1998 ]
Επιστημονικά Ενδιαφέροντα:
  • Στατική Ανάλυση Κατασκευών.
  • Δυναμική Ανάλυση Κατασκευών.
  • Σεισμική Μηχανική.
  • Υπολογιστικές Μέθοδοι Ανάλυσης Κατασκευών.
  • Μέθοδος Συνοριακών Στοιχείων.
  • Μέθοδος Πεπερασμένων Στοιχείων.
  • Ανάλυση Κατασκευών με Η/Υ.
  • Αλληλεπίδραση Εδάφους-Κατασκευής.
  • Έλεγχος Ταλαντώσεων Κατασκευών.
  • Μείωση Δυναμικής Απόκρισης Κατασκευών με χρήση Σεισμικής Μόνωσης και Αποσβεστήρων Συντονισμένης Μάζας.
  • Υπολογιστικές Μέθοδοι στη Μηχανική των Κατασκευών.
  • Ανάλυση Δομικών και Γεωτεχνικών Κατασκευών.
  • Κατασκευές από Οπλισμένο Σκυρόδεμα.
  • Κατασκευές με τοιχοπληρώσεις.
  • Μεταλλικές Κατασκευές.
  • Υπολογιστικές Μέθοδοι στη Μηχανική των Υλικών.
  • Ελαστοδυναμική.
  • Ελαστοπλαστικότητα.
  • Εφαρμογές Πληροφορικής στην Επιστήμη του Πολιτικού Μηχανικού.
  • Εφαρμογές Τεχνητής Νοημοσύνης στην Επιστήμη του Πολιτικού Μηχανικού.
  • Τεχνικές Υπολογιστικής Νοημοσύνης.
  • Προγραμματισμός Η/Υ σε Εφαρμογές Πολιτικού Μηχανικού.
  • Βιωσιμότητα Δομικών Υλικών και Κατασκευών.
  • Τεχνολογία Μοντέλων Δομικών Πληροφοριών (BIM).
Science Interest:
  • Static Analysis of Structures.
  • Dynamic Analysis of Structures / Structural Dynamics.
  • Earthquake Engineering.
  • Computational Methods of Structural Analysis.
  • Boundary Element Method (BEM).
  • Finite Element Method (FEM).
  • Computer-Aided Structural Analysis.
  • Soil-Structure Interaction.
  • Vibration Control of Structures.
  • Mitigation of the Dynamic Response of Structures using Seismic Isolation and Tuned Mass Dampers. 
  • Computational Methods in Structural Mechanics.
  • Analysis of Structural and Geotechnical Structures.
  • Reinforced Concrete Structures.
  • Structures with masonry infills.
  • Steel Structures.
  • Computational Methods in Mechanics of Materials.
  • Elastodynamics. 
  • Elastoplasticity.
  • Informatics and Computing Applications in Civil Engineering.
  • Applications of Artificial Intelligence in Civil Engineering.
  • Soft Computing Techniques.
  • Computer Programming in Civil Engineering Applications
  • Sustainability of Building Materials and Structures.
  • Building Information Modeling (BIM).
Selected publications: