跳去內容

質數

出自維基百科,自由嘅百科全書
數學
基本

延伸

其他

圓周率 π = 3.141592653…
自然對數嘅底 e = 2.718281828…
虛數單位 i = 
無窮大量 

質數粵拼zat1 sou3),又叫素數sou3 sou3),係個大過 1自然數,除咗自己同 1 之外,無其他數可以將佢整除英文入面叫質數做prime number或者prime

大過1又唔係質數嘅自然數就叫合成數,合成數都係由大過1嘅自然數相乘而來。例如 5 就係質數,因為要將 5 寫做乘積嘅話,就一定係 或者係 ,點都要用返 5 自己。4 就係一個合成數,因為可以將 4 寫做,用兩個細啲嘅數相乘而得到 4。

喺數論入面,質數好重要,因為算術基本定理指出,大過 1 嘅自然數,一係佢已經係質數,一係佢可以寫做一柞質數乘埋,而且呢個寫法唔計次序嘅話係唯一嘅。

質數有無限個,公元前300年左右,歐幾理德證明過呢點。頭三十個質數係2357111317192329313741434753596167717379838997101103107109同埋113。(OEIS數列A000040

定義

[編輯]

假設 係一個整數。如果 只有 同埋 係佢嘅因數,咁 就係一個質數。唔係嘅話, 就係一個合成數 同埋 就質數、合成數兩者都唔係。

搵法

[編輯]
愛氏篩搵120以內質數嘅演算法

搵質數最簡單係用愛氏篩(Sieve of Eratosthenes),即係先將第一個質數(即係2)嘅倍數篩走,跟住將下一個質數(即係3)嘅倍數篩走,如此類推。

歐幾理得推論

[編輯]
歐幾理得推論(質數版)

如果係一個質數同埋,咁就一係或者

證明:

假設唔可以被整除,即係

因為,利用相對質數性質,得出

由上可得推理:

如果係一個質數同埋,咁樣係一個自然數符合

呢個推理指嘅係,如果質數除得盡一個合成數,呢個合成數由個數字乘出嚟,佢嘅因數就叫做,咁樣一定除得盡其中一個因數。

證明:

利用歐幾理得推論,或者

再利用多一次,得出或者

如此類推,或者或者或者,結果就係一定除得盡其中一個。

歐幾理得證明

[編輯]

存在無限質數。

證明: 假設得咁多個質數,叫,而家考慮一個整數

假設係一個質數。

因為佢係上面講嘅樣,所以唔止得咁多個質數,令到同第一句有矛盾,所以唔可以係質數。

根據質數分解一定可以被一啲(即係上面n咁多個其中)質數除得盡,但係根據餘數定理係唔可能俾上面n個質素除得盡,

即係 一定有 唔可以被整除,

所以係一個質數。因為咁令到同第一句有矛盾。

以上兩個情況都出現咗矛盾,即係話假設出錯,質數一定係有無限咁多個。

質數分佈

[編輯]

細過或等於n嘅自然數入面大概有 個質數。

睇埋

[編輯]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy