純粹數學

(重定向自纯粹数学

純粹數學pure mathematics)又称基础数学理论数学[1],是一門專門研究數學本身,不以应用为目的的學問[註 1]相對概念为應用數學

E8 项目

純粹數學被人視為严格、抽象和美丽,以數論数理逻辑為其代表。自18世纪以来,純粹數學成为数学研究的一个特定种类,并随着探险天文学物理学工程学等的发展而发展。

历史

编辑

19世纪

编辑

“純粹數學”这个词是从薩德萊里安纯粹数学教授英语Sadleirian Chair这个19世纪中期建立的教授职位的全名而来的。“純粹”数学作为一门独立的学科的想法可能就是从那个时候发展起来的。高斯一代的数学家没有彻底地区分过“純粹”和“应用”。之后,专门化和专业化,特别是魏尔施特拉斯研究数学分析的方法,使得两者的区别越来越大。

20世纪

编辑

进入20世纪,数学家们受到希尔伯特的影响,开始使用公理系统罗素提出了“純粹数学”的逻辑公式化方法,以量化命题为形式。随着数学的公理化,这些公式变得越来越抽象,“严格证明”成为了简单的标准。

实际上在公理系统中,“严格”在“证明”中没有任何新意。以布尔巴基小组的观点,純粹数学就是已经被证明了的公理。纯粹数学家成为普遍接受的职业,可以通过训练而取得。

一般化与抽象

编辑

纯粹数学的一个核心思想就是一般化,它常常有一种更加一般化的趋势。

  • 将定理或数学结构一般化能使对其理解更深
  • 一般化能够简化表达,使证明更短
  • 利用一般化可避免重复证明
  • 一般化可为不同数学分支的联系带来便利。范畴论即是探索这种关联和共性的一个数学领域。

纯粹主义

编辑

关于纯粹数学应用数学,数学家们总有不同的见解。有人认为,最有名的现代例子莫过于戈弗雷·哈罗德·哈代一个数学家的辩白

通常认为,哈代认为应用数学非常丑陋和枯燥。哈代偏爱纯粹数学,常把纯粹数学跟画和诗相提并论。他认为应用数学只不过是在数学框架内寻求世界的物理原理,而纯粹数学则表达了独立于物理世界的另一种真实。在他眼中,“真实”数学“具有永恒的美学价值”,而“数学的基本和枯燥的部分”拥有实用价值。[來源請求]

注释

编辑
  1. ^ 至少在生活内无法实际应用

參考

编辑
  1. ^ 存档副本. [2023-09-05]. (原始内容存档于2023-09-05). 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy