参数方程

使用一定参数表示函数得到的曲线

参数方程(英语:Parametric equation)和函数相似,都是由一些在指定的集合,称为参数自变量,以决定因变数的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

用参数方程可以很容易表示出的蝶形线

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

 ,表示了平面上半径为 、以原点为圆心的。在三维,加入 ,便是螺旋的图形。这些式子可以表示成:

 

如果有一个粒子,沿这个螺旋的路径而行,直接微分上面的式子便会得到粒子的速度:

 

加速度

 

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

譬如一个圆柱:

 


参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解,如圆的渐开线的普通方程。

根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。

常见参数方程

编辑
 
圆形参数方程在r=1的情形。
  • 直线
    • 点斜式过 斜率 的直线:  
    • 点向式过 , 方向向量 的直线: 
  •  
  • 椭圆 
  • 双曲线 
  • 抛物线 
  • 螺线 
  • 摆线 

注:上文中的 为已知数,t都为参数, x, y为变量

参见

编辑
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy