跳转到内容

代数方程

维基百科,自由的百科全书

代数方程未知数常数进行有限次代数运算所组成的方程。代数方程包括有理方程无理方程。有理方程又包括整式方程与分式方程。

解法

[编辑]

一元一次方程都可化为其标准形式)。解一元一次方程通常使用以下五步进行求解:“去分母”、“去括号”、“移项”、“合并同类项”、“系数化为1”。

解一元次方程(为正整数)往往可以通过因式分解,化为个一次因式的乘积,进而解出方程所有的

另外,二次方程三次方程四次方程可以利用方程求解公式求出其所有的根。然而,伽罗瓦理论指出,对于五次及其以上的一元整式方程,并不存在通用的求根公式。

根据代数基本定理,任意复系数一元次方程有且仅有个根(为正整数),重根按重数计。

分式方程通常先将方程两边乘以其分数项的最简公分母,化为整式方程。再解这个整式方程。最后剔除使原方程分母为0的所有根。剩下的根即为原方程的根。

解无理方程先将被开方式中带有未知数的项移到等号的一边,将常数项移到等号的另一边。再两边乘方,去掉根号,化为有理方程。最后剔除使原方程被开方式小于0的所有根。剩下的根即为原方程的根。

可见,由于分式中分母不为0,根式中被开方式大于或等于0,因此分式方程与无理方程都有可能产生“增根”。所以,有的分式方程与无理方程没有解。

参见

[编辑]

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy