跳转到内容

变分法

本页使用了标题或全文手工转换
维基百科,自由的百科全书

变分法是处理泛函数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在純粹數學中的例子有,黎曼调和函数中使用狄利克雷原理

同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面肥皂泡)上也有很多研究工作,称为普拉托问题

历史

[编辑]

变分法可能是从约翰·伯努利(1696)提出最速曲线(brachistochrone curve)问题开始出现的。[1]它立即引起了雅各布·伯努利洛必达(Marquis de l'Hôpital)的注意。但欧拉首先详尽的阐述了这个问题。他的贡献始于1733年,他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。欧拉对这个理论的贡献非常大。

勒让德(1786)确定了一种方法,但在对极大和极小的区别不完全令人满意。牛顿莱布尼茨也是在早期关注这一学科,对于这两者的区别Vincenzo Brunacci(1810)、高斯(1829)、泊松(1831)、Mikhail Ostrogradsky(1834)、和雅可比(1837)都曾做出过贡献。Sarrus(1842)的由柯西(1844)浓缩和修改的是一个重要的具有一般性的成就。Strauch(1849)、Jellett(1850)、Otto Hesse(1857)、Alfred Clebsch(1858)、和Carll(1885)写了一些其他有价值的论文和研究报告,但可能那个世纪最重要的成果是Weierstrass所取得的。他关于这个理论的著名教材是划时代的,并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。1900年希尔伯特发表的23个问题中的第20和23个问题促进了其更深远的发展。

在20世纪希尔伯特埃米·诺特列奧尼達·托內利昂利·勒貝格雅克·阿达马等人做出重要贡献。Marston Morse将变分法应用在莫尔斯理论中。Lev Pontryagin、Ralph Rockafellar和Clarke广义变分法最优控制理论发展了新的数学工具。

欧拉-拉格朗日方程

[编辑]

在理想情形下,一函數的极大值及极小值會出現在其導數的地方。同樣地,求解變分問題時也可以先求解相關的欧拉-拉格朗日方程。以下以尋找連接平面上兩點最短曲線的例子,說明求解的過程。曲線的長度為

其中

函數至少需為一階可微的函數。若是一個局部最小值,而是一個在端點取值为零并且至少有一階導數的函數,則可得到以下的式子

其中為任意接近的數字。

因此的導數(A的一階導數)在時必為

此條件可視為在可微分函數的空間中,在各方向的導數均為。若假設二階可微(或至少弱微分存在),則利用分部積分法可得

其中為在兩端點皆為0的任意二階可微函數。這是變分法基本引理的一個特例:

其中為在兩端點皆為的任意可微函數。

若存在使,則在周圍有一區間的H也是正值。可以選擇在此區間外為,在此區間內為非負值,因此,和前提不合。若存在使,也可證得類似的結果。因此可得到以下的結論:

由結論可推得下式:

因此兩點間最短曲線為一直線。

在一般情形下,則需考慮以下的計算式

其中f需有二階連續的導函數。在這種情形下,拉格朗日量L在極值处滿足欧拉-拉格朗日方程

不過在此處,欧拉-拉格朗日方程只是有極值的必要條件,並不是充分條件。

費馬原理

[编辑]

費馬原理指出:光會沿着兩端點之間所需光程最短的路徑前進。假設為光的路徑,則光程可以下式表示:

其中折射率依材料特性而定。

若選擇,則的一階導數(的微分)為:

將括號中的第一項用分部積分處理,可得歐拉-拉格朗日方程

光線的路徑可由上述的積分式而得。

斯乃爾定律

[编辑]

當光進入或離開透鏡面時,折射率會有不連續的變化。考慮

其中是常數。在x<0或x>0的區域,歐拉-拉格朗日方程均和以上描述的相同。因為折射率在二個區域均為定值,在二個區域光都以直線前進。而在x=0的位置,f必須連續,不過f' 可以不連續。在上述二個區域用分部積分的方式解歐拉-拉格朗日方程,則其變分量為

相乘的係數是入射角的正弦值,和相乘的係數則是折射角的正弦值。若依照斯涅爾定律,上述二項的乘積相等,因此上述的變分量為0。因此斯涅爾定律所得的路徑也就是要求光程一階變分量為0的路徑。

費馬原理在三維下的形式

[编辑]

費馬原理可以用向量的形式表示:令,而t為其參數,是曲線C參數化的表示,而令為其法線向量。因此在曲線上的光程長為

上述積分和t無關,因此也和C的參數表示方式無關。使曲線最短的歐拉-拉格朗日方程有以下的對稱形式

其中

依P的定義可得下式

因此上述積分可改為下式

依照上式,若可以找到一個函數ψ,其梯度为P,則以上的積分A就可以由在積分端點上ψ的差求得。以上求解曲線使積分量不變的問題就和ψ的level surface有關。為了要找到滿足此條件的函數ψ,需要對控制光線傳動的波動方程式進行進一步的研究。

和波動方程的關係

[编辑]

應用

[编辑]

最优控制的理论是变分法的一个推广。

参看

[编辑]

参考

[编辑]
  1. ^ Gelfand, I. M.; Fomin, S. V. Silverman, Richard A. , 编. Calculus of variations Unabridged repr. Mineola, N.Y.: Dover Publications. 2000: 3 [2013-05-22]. ISBN 978-0486414485. (原始内容存档于2019-05-03). 
  • Fomin, S.V. and Gelfand, I.M.: Calculus of Variations, Dover Publ., 2000
  • Lebedev, L.P. and Cloud, M.J.: The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics, World Scientific, 2003, pages 1-98
  • Charles Fox: An Introduction to the Calculus of Variations, Dover Publ., 1987
  • Forsyth, A.R.: Calculus of Variations, Dover, 1960
  • Sagan, Hans: Introduction to the Calculus of Variations, Dover, 1992
  • Weinstock, Robert: Calculus of Variations with Applications to Physics and Engineering, Dover, 1974
  • Clegg, J.C.: Calculus of Variations, Interscience Publishers Inc., 1968
  • Elsgolc, L.E.: Calculus of Variations, Pergamon Press Ltd., 1962

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy