跳转到内容

布盧姆整數

维基百科,自由的百科全书

數學上,如果一個自然數 n = p × q ,即一個半質數,其中 p 和 q 是相異的質數,且 4 之值皆為 3 [1] 。也就是說 p 、q 皆為 4t + 3 的形式(t 是某個整數)。則 n 是一個「布盧姆整數」。[2]而此時前述的 p、q 稱為「布盧姆質數」。 這也就表示,布盧姆整數的因數是沒有虛數項的高斯質數

前幾個布盧姆整數如下:

213357697793129133141161177 ,201,209,213,217,237,249,253,301,309,321,329,341,381,393, (OEIS數列A016105

這些整數以電腦科學家曼紐爾﹒布盧姆之名命名。

性質

[编辑]

給定一個布盧姆整數 n = p × q 、Qn 為所有模 n 下的二次剩餘並與 n 互質之數的集合,以及一數 a ∈ Qn。則:[2]

  • a 有四個模 n 下的平方根,其中恰好一個在Qn 裡 。
  • 這個屬於Qn 的唯一一個平方根,稱為 a 的模 n 下的一個「主平方根」。
  • 一函數 f: QnQn ,定義為f (x) = x2 (模n)。 f 的反函數為:f -1 (x) = x(p-1)(q-1) + 4 ) / 8 (模 n)。[3]
  • 對於每個布盧姆整數 n ,-1 模 n 下的雅可比符號為 +1,儘管 -1 不是 n 的一個二次剩餘:

歷史

[编辑]

在現代質因數分解演算法,如 MPQSNFS ,發展出來前,人們認為在選擇作為 RSA 的模數時,布盧姆整數很有用。

現今已不再認為此為合理的措施。因為 MPQS 以及 NFS 能夠像,隨機選擇質數去構造出來的 RSA 模數一樣容易地去分解布盧姆整數。

參考資料

[编辑]
  1. ^ Joe Hurd, Blum Integers (1997), retrieved 17 Jan, 2011 from http://www.gilith.com/research/talks/cambridge1997.pdf页面存档备份,存于互联网档案馆
  2. ^ 2.0 2.1 Goldwasser, S. and Bellare, M. "Lecture Notes on Cryptography"页面存档备份,存于互联网档案馆). Summer course on cryptography, MIT, 1996-2001
  3. ^ Menezes, Alfred; van Oorschot, Paul; Vanstone, Scott. Handbook of applied cryptography. Boca Raton: CRC Press. 1997: 102. ISBN 0849385237. OCLC 35292671. 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy