跳转到内容

情景计划

维基百科,自由的百科全书

情景计划,也称情景规划情景思考情景分析情境規劃[1],是一些企业用来进行长期计划的战略计划方法。很大程度上属于适应、归纳军事情报中的经典方法。

原始方式是一个分析小组进行模拟游戏进行决策。游戏包括已知事实和未来事件,例如人口统计学, 地理, 军事, 政治, 工业信息和矿产资源等,对社会、技术、经济、环境、教育、政治和美学(STEEEPA)提出有用建议和关键驱动力。

在商业中,对对手行为的博弈减少(更多改为与环境的博弈)。在壳牌公司,情景规划是对世界外部环境,在进行战略决策前改变思维。

情景决策可包括系统思维,特别是对复杂方式能创造惊人未来的多种因素(根据非线性反馈回路)。这种方法也允许加入很难计算的因素,例如新的未来思维、价值观的深刻改变、不可预料的规则和发明。系统思维与情景规划共同,规划实际、可行的情景故事脉络。当情景计划与系统思维共同时,进行情景开发,有时称为结构动力。

建立情景

[编辑]

事实和相关社会变化的组合、排列称为"情景",情景一般指可行的但是未预料的重要环境、问题等。未来研究分析专家选择可能、不让人舒适的情景。情景计划帮助决策者预测隐藏的弱点、非灵活性等。

零和情景

[编辑]

战略军事情报组织也可建立情景,方法几乎相同,可应用于很多问题,不仅仅限于军事、政治问题。在军事情报中,主要的挑战是发现真实场景中的决策需要。如果决策者都不知道该了解什么,或者无法描述环境,就不能知道他们所需要的。

好的分析师会设计战争游戏,让决策者有更多灵活性、自由性,适应模拟组织。然后游戏会对这些组织"施压"。一般地,特殊事实很重要。这些思考让情报机构能更加准确地重新定义、重新包装真实信息,更好服务于真实的决策。一般来说,模拟游戏时间比正常时间快一百倍,决策者一天内可经历数年的决策。

军事情景模拟如何进行

[编辑]
  1. 决定分析的关键问题 可决定为何进行情景决策,如果是微小变化、少数因素,其他方法可能更合适。
  2. 确定时间、分析范围 决定变化速度、试图评估等级,预测人口统计学、产品生命周期等一般趋势,一般时间表可设为10年。
  3. 确定主要股东 决定谁受到影响,何种影响。发现他们目前利益,这些利益是否在过去有改变。
  4. 基本趋势和驱动力图 包括工业、经济、政治、科技、法律、社会趋势。评估这些趋势会如何影响问题,描述趋势,为何会影响组织。在流程中往往进行思考,所有趋势要在思考后进行评估,进行小组思考或tunnel vision。
  5. 关键不确定性 在两个轴线上定义不确定性,评估每种驱动力对不确定性或(相对)可预测性以及可能/不可能事件的影响规模。所有不重要的驱动力应淘汰。可预测重要驱动力(如人口统计)可包含在所有场景中,留下一些重要、不可预测驱动力。还需要评估驱动力之间的联系,淘汰那些"不可能"的情景(如无失业率、零通胀等)。
  6. 进行驱动力有效分组,把驱动力减为两个最重要的。(让情景可以归入xy象限)。
  7. 确定极端情况发现驱动力的一致性和可行性。需要分析:
    1. 时间表: 趋势是否与时间表吻合?
    2. 内部一致性: 可建设可能情景的未知事件的驱动力
    3. 股东: 是否有股东与期望情景不平衡?情景是否可发展?是否可考虑适合股东的情景?当与政府、大型股东进行情景模拟时,试图影响结果。
  8. 确定情景尽量把情景写在表格中,一般创建二到四个情景就够了。当前情景不需要放在表格中央,特别用三到四个驱动力时,尽量只用一个驱动力。可以把所有积极元素都纳入一个情景,把所有消极元素都纳入另一个情景,然后淘汰最佳情况和最差情况。
  9. 写下情景描述当前,展望未来。挖掘变化的根本原因,进行下一步分析。最后,给每个情景起个好听的(劲爆的)名字。
  10. 评估情景想想,情景与目标是否相符?是否一致?是否典型?是否有相对稳定结果?
  11. 确定研究需要 根据情景,想想需要哪些信息。多获取激励股东的信息、可能的创新等等。
  12. 进行量化分析尽量对不同情景进行量化分析,如增长率、现金流等。肯定需要大量工作
  13. 进行情景决策 用迭代过程追溯上述情景,发现组织面对的首要问题。发现情景的优势和劣势。


商业中的情景分析

[编辑]

过去,战略规划一般只是用于"官方未来",是当前情况延伸到未来的直线分析。一般由财务部门分析、缺乏人口统计学、社会质量等区别。

很多公司开始广泛采用情景规划,用简单、技术决策、发展为复杂的战略规划和视野建立。[2][3][4]情景规划的力量最早由壳牌公司发现,从1970年代早期就开始使用情景规划,作为产生、评估战略选项的流程。[5][6]壳牌的油气分析一直比其他油气公司更强,油轮业务容量很大,在欧洲的油气开发也早于竞争者。[2]但讽刺的是,这种方法在壳牌以外比公司内应用更多,其他公司和咨询公司都开始使用情景规划。情景规划是一种管理艺术,有很多陷阱(流程和内容上),最早由Paul J. H. Schoemaker提出。[7]

壳牌进行情景规划的批评

[编辑]

在1970年代,很多能源公司由于环境主义者OPEC的影响,损失了上百亿美元利润,进行错误投资。这些财务损失让很多公司,包括壳牌公司,进行情景规划。公司公开预计,情景规划流程让公司成为世界最大。[2]但其他观察者认为,壳牌使用情景分析获得很少长期优势,而且壳牌的长期情景经常受到质疑。壳牌内部人员曾说"情景小组很聪明,具有很高智商,但是关键决策制定以后,高标准的"群组情景"和国家级别的情景从来没有执行过。"[source missing]

情景规划由Arie de Geus的小组与1980年初期提出,他们发现遵循情景规划的决策缺乏战略实施,而不是缺乏情景。很多执行者创建情景的时间和决策的时间一样多。

2005年,壳牌的前规划者Peter Cornelius, Alexander Van de Putte和Mattia Romani在《加州管理杂志》发布文章,总结三十年的情景规划。

情景规划的一般限制

[编辑]

尽管情景规划在工业中很受欢迎,其主观性、启发性让很多学者不认可。我们是否知道情景是否正确?如何从情景进行决策?这些考虑合理,只有更多竞争表现和理论问题进行研究后,情景规划才能得到认可。[8]学术上很少认可情景分析(有个著名例外,参见Paul J. H. Schoemaker[9])这项技术从实践中来,更多是依靠故事,而不是科学分析。情景规划是一种集体研究的工具,是重新认知、保存不确定性的方法。很多决策者希望只赌一种情景,掉入了只试图预测未来,而不是选择多种未来的陷阱。

经理使用情景分析

[编辑]

基本流程很简单,作为预测来讲,可以分为三类活动(长期流程):[10]

  1. 环境分析
  2. 情景规划
  3. 公司战略

流程

[编辑]

与长期规划不同的流程是核心部分,即情景制造。这个过程也很简单。壳牌使用的方法包括六个步骤:

  1. 决定变革和提议的驱动力
  2. 把驱动力归入合理的框架
  3. 制造7-9个最初的小型情景
  4. 减少到2-3个情景
  5. 草拟情景
  6. 确定出现的问题

步骤1 - 决定变革的驱动力

[编辑]

第一步是检查环境分析的结果,决定企业未来环境的最重要驱动力。这些因素有时称为'变量'(因为随着调查时间变化,虽然会有时迷惑更严谨的科学家)。用户往往喜欢(变革)'驱动力'这个名字,这个名字不含有准科学的含义,加强了参与者寻找未来变化因素的任务。

部分上是一个分析过程,需要确定这些'力'。但是前期环境研究可能已经对此有所涉及。随着时间,到了正式的情景规划阶段,参与者可能在潜意识上,而不是正式地,已经感知到主要驱动力。

理想的情况是,第一阶段要仔细研究可能成为情景的假设,仔细定义几种驱动力。参与者可能无法分辨这些阶段。

可能最困难的是把参与者的成见去除。很多参与者很重视中间阶段(五到十年),而不是长期(十年以上)。任何少于十年的时间阶段都可能让参与者从目前潮流推断,而不是考虑面对的替代选项。如果考虑十年以上,所有的参与者可能都会接受情景规划流程的逻辑,不再根据现实推断。加宽参与者范围,包括整个外部环境时,也会遇到同样问题。

思维

任何情况下,然后会进行思维,保障列表完整,发现更多变量,特别是混合变量。一个非常简单的方式是思维,在壳牌中,在情景规划中经常产生争论。

重要的未知

只有最重要的因素才可用到情景规划中,80:20规则意味着在流程结束时,管理层的注意力必须集中在有限数量的重要问题。经验显示,宽泛的主题只能让他们选择少数感兴趣的,而这些不是对于组织罪重要的。另外,如果情景有不同的未来,那么因素必须是真正的'变量'。必须有明显的替代结果,应该特别划出那些结果可预期,但是很重要的因素,不能忽略。壳牌的Kees van der Heijden提出的重要不确定性矩阵是该阶段的重要检验方法。[3]

另外,情景的一个好处是可容纳很多其他形式的预测。可使用图标、表格、文字进行组合,没有其他形式的预测有这样的灵活性。

步骤2 - 把驱动力加入可行框架

[编辑]

第二步是把这些驱动力组合成一个可行框架。有些因素互相关联。例如,技术因素可能导致市场变化,但受到法律因素制约。另外,一些'联系'(至少'分组')可能需要人工进行。后续,还会发现一些更深层的联系,或者情景会淘汰一些因素。在最理论的方法中,概率与事件关联。很难达到,而且往往只会让结果变得更复杂。

步骤3 - 产生最初的小型情景

[编辑]

上个步骤最后把七到九个驱动力进行分组。很容易获得。'主观'原因可能是参与者可以同时思考的因素有限。把驱动力归类以后,下一步是分析他们之间的关系,每一个驱动力因素代表什么?

步骤4 - 减少为两到三个情景

[编辑]

下一步主要是把七到九个小型情景(群组)减少为两到三个情景。实际中的挑战是发现两到三个'盒子',把所有的主题都归纳进去。可能需要大量讨论,过程中,可能产生很多的光和热。创建这些基本情景本身经常可以让人思考真正的重要因素(生死因素)。在讨论中,尽管最后报告有总结,参与者可能从讨论中开始理解,导致变革的最重要驱动力是什么,同伴是怎么样看待的?根据内在理解,他们已经准备好应对这些变化,尽管不求助于最终报告,在实际发生时本能反应。

减少到两到三个情景没有理论根据,只是根据实践。经理往往最终只能处理三个版本的最终情景。壳牌从三十年前就开始通过建立十多个情景,但是发现经理最终只选择一种。于是,规划者把情景减少到两到三个,经理可更容易处理,但是不能只剩下一个。这就是现在大多数文章中推荐的数量。

补充情景

在壳牌,往往加上两个附加情景,理由是避免经理只'选择'一个'偏好'的情景,导致单一轨道的预测(拒绝使用'替代'情景来预测不可知的未来)。这是一个很难抓住的概念,经理往往相反,只选择一个最佳或最坏情景。

测试

把因素归为两个情景后,下一步是进行测试其有效性。是否对参与者有意义?可以是逻辑分析,也可以是直观的'感受'。另外,直觉上往往在复杂、无法定义的事件上更有效。如果情景在直觉上没有'钩在一起',为什么不进行直觉?问题是一个或多个假设可能不现实,如果是这样,就需要回到第一步。整个情景规划流程是一个迭代的过程(回到开始,知道获得最后的结果)。

步骤5 - 记录情景

[编辑]

情景用最合适的方式'写下来',这步很灵活,往往迷惑参与者,他们习惯于预测流程用固定的格式。但是需要用经理最适合的方式记录情景。还需要考虑实施计划的经理。他们也要接触情景,需要相信。这实际上是一个'市场营销'决定,把最终结果'卖给'用户。另一方面,还需要用作者觉得最舒服的方式。如果对某种方法不熟悉,他要'卖'的情景肯定无法令人信服。

步骤6 - 发现问题

[编辑]

最后一步流程是检查情景,决定哪种是最关键的结果。与问题相关的'分支点'往往有最大的影响力(往往产生'危机')。下述的战略会发现这些问题:产生情景的正常方法是减少风险,显得'稳健'(会安全地处理所有'生死关头'问题),而不是只关注绩效(利润)最大化,对结果进行赌注。

使用情景

[编辑]

情景可用于多种方法:

a) 驱动力集合

b) 一致性测试

c) 积极观点

也许情景最主要的好处是,来自于不同'发展'未来的观点。当情景最终产生,参与者可审视他们的观点,发现未来的基本雏形,这就不再是一个理论的练习,而是一个真正的框架(或不同的替代框架)。

情景规划与其他方法比较

[编辑]

情景规划与意外规划, 敏感性分析计算机模拟不同。[11]

意外规划是一种"如果...则..."的工具,只考虑不确定性。情景规划考虑不确定性综合的情景,规划者还需要选择特别可行但不舒服的社会发展。

敏感度分析只有一个变量,一般为简单变化,情景规划让政策制定者可接触多种变量的互动。

情景规划可通过计算机模拟,但是没有这样正式,可用于定性的模型,包含范围很广的模拟事件。

过去五年中,瑞典防卫研究所斯德哥尔摩开发的计算机支持形态学分析,更多加入了情景发展。[12]这种方法可创造多变量的形态学场,作为推理模型,把情景规划技术与意外规划敏感性分析相结合。

情景规划与德尔菲法

[编辑]

情景规划是根据系统性检测,绘出一份可能的、一致的蓝图。德尔菲法是系统性发展有关未来发展、事件的专家意见的方法。是一种匿名、书面、多层次统计、每轮后有群组意见的预测流程。

很多学者都说,两种方法可最有效互补。Kinkel et al. (2006)[13]最近报告了他们在情景-德尔菲和德尔菲-情景方面的经验,由于过程的相似性,两种方法可以早期合并。德尔菲法不同阶段的结果,可以作为情景方法的输入数据,反之亦然。结合后两种方法都达到最大化。实践中,可认为一种方法为主导方法,在适当时期加入另一种。作者发现,不管先后如何,两种方法组合后都对未来项目带来明显价值。

实践中,往往把德尔菲法加入情景规划(参见Rikkonen, 2005;[14] von der Gracht, 2007;[15] Transportation & Logistics 2030 – How will supply chains evolve in an energy constrained and low-carbon world页面存档备份,存于互联网档案馆); Transportation & Logistics 2030 – Transport infrastructure – Engine or hand brakes for global supply chains?页面存档备份,存于互联网档案馆); Future of Logistics – Global Scenarios 2025)作者把这称为德尔菲-情景分析,专家情景分析或德尔菲法的情景规划。Von der Gracht (2010) [16]是一种科学的方法,因为情景分析“渴求信息”,德尔菲法能提供很多有价值的信息。德尔菲法有多种信息输出,可作为情景规划的信息输入,研究者可发现相关事件、发展,根据专家意见,制定每种的可能性。另外,专家意见和论断让因素之间的关系更清楚,并进一步加入情景分析。另外,德尔菲法还帮助发现极端意见,和专家中的不同意见。这些有争议的意见特别适合情景分析的极端情况。

Rikkonen (2005)的博士论文中[14]透彻阐述了德尔菲法用于情景规划的情况,特别是情景建设。结论是,德尔菲法对于提供不同替代未来和情景假设有重要意义。推荐使用德尔菲法进行情景规划,创造情景时更加有信心,也简化了情景记录流程,更深地理解预测项目和社会因素之间的关系。

参考

[编辑]
  1. ^ scenario planning - 情境規劃;預測. terms.naer.edu.tw. [2020-02-23]. (原始内容存档于2020-02-23). 
  2. ^ 2.0 2.1 2.2 Schwartz, Peter. The Art of the Long View. Doubleday, 1991.
  3. ^ 3.0 3.1 van der Heijden, Kees. Scenarios: The Art of Strategic Conversation. Wiley & Sons, 1996.
  4. ^ Ringland, Gil. Scenario Planning: Managing for the Future. Wiley & Sons, 1998.
  5. ^ Wack, Pierre. "Scenarios: Uncharted Waters Ahead", Harvard Business Review. September–October, 1985.
  6. ^ Schoemaker, Paul J.H. and Cornelius A.J.M. van der Heijden, "Integrating Scenarios into Strategic Planning at Royal Dutch/Shell," Planning Review. Vol. 20 (3): 1992, pp.41-46.
  7. ^ Schoemaker, Paul J.H. “Scenario Planning: A Tool for Strategic Thinking,” Sloan Management Review. Winter: 1995, pp. 25-40.
  8. ^ Fahey, Liam and Randall, Robert M. Learning from the Future. Wiley & Sons, 1998.
  9. ^ Schoemaker, Paul J.H. “Multiple Scenario Developing: Its Conceptual and Behavioral Basis,” Strategic Management Journal. Vol. 14: 1993, pp 193-213.
  10. ^ Schoemaker, Paul J.H. “Scenario Planning: A Tool for Strategic Thinking,” Sloan Management Review. Winter: 1995, pp. 25-40.
  11. ^ Schoemaker, Paul J.H. Profiting from Uncertainty. Free Press, 2002.
  12. ^ T. Eriksson & T. Ritchey, Scenario Development using Computer Aided Morphological Analysis, (PDF). [2012-10-13]. (原始内容存档 (PDF)于2021-01-29).  Adapted from a Paper Presented at the Winchester International OR Conference, England, 2002.
  13. ^ Kinkel, S., Armbruster, H., & Schirrmeister, E. (2006). Szenario-Delphi oder Delphi-Szenario? Erfahrungen aus zwei Vorausschaustudien mit der Kombination dieser Methoden. In J. Gausemeier (Ed.), Vorausschau und Technologieplanung: 2. Symposium für Vorausschau und Technologieplanung (pp. 109-137). Paderborn: Heinz-Nixdorf-Institut.
  14. ^ 14.0 14.1 Rikkonen, P. (2005). Utilisation of alternative scenario approaches in defining the policy agenda for future agriculture in Finland. Turku School of Economics and Business Administration, Helsinki.
  15. ^ von der Gracht, H. (2007). Scenario Planning for Logistics Service Providers. Planning Practices and Scenarios for 2025. EBS Business School, Supply Chain Management Institute, Germany
  16. ^ von der Gracht, H. A./ Darkow, I.-L.: Scenarios for the Logistics Service Industry: A Delphi-based analysis for 2025. In: International Journal of Production Economics, Vol. 127, No. 1, 2010, 46-59.
  • M. Godet, Scenarios and Strategic Management, Butterworths (1987).
  • M. Godet, From Anticipation to Action: A Handbook of Strategic Prospective. Paris: Unesco, (1993).
  • Adam Kahane, Solving Tough Problems: An Open Way of Talking, Listening, and Creating New Realities (2007)
  • H. Kahn, The Year 2000, Calman-Levy (1967).
  • Herbert Meyer, "Real World Intelligence", Weidenfeld & Nicolson, 1987,
  • National Intelligence Council (NIC)页面存档备份,存于互联网档案馆), "Mapping the Global Future", 2005,
  • M. Lindgren & H. Bandhold, Scenario planning – the link between future and strategy, Palgrave Macmillan, 2003
  • G. Wright& G. Cairns, Scenario thinking: practical approaches to the future, Palgrave Macmillan, 2011

参见

[编辑]

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy