跳转到内容

核受体

维基百科,自由的百科全书
圖爲一種核受體PPAR-γ與DNA結合結構的晶體衍射圖

核受体,又称为核内受体(英語:Nuclear receptor)是细胞内一类转录因子的统称。核受体超家族的成员在细胞生长发育、分化与新陈代谢均起到了重要的作用。[1]由于核受体都位于细胞内部,因此它们的激素均为溶脂性,这样才能穿越由脂肪构成的细胞膜。对核受体的研究始于20世纪70年代,70年代末期第一批核受体被提取、分离了出来。[2]核受体同激素结合后被激活,激活后的核受体复合物负责引导靶基启动因子的转录。[3]

核受体的一个独特性质是将它们与其他类别的受体区分开来,这是它们直接与基因组DNA表达相互作用和控制其表达的能力。 因此,核受体在胚胎发育和成体内平衡中发挥关键作用。 如下所述,核受体可根据机制或同源性进行分类。

物种分布与进化

[编辑]

目前已知的核受体仅存于动物基因组中,和动物最为接近的领鞭毛虫都没有。真菌藻类植物和其它原虫中都没有发现核受体[4]。几乎最早的动物就已经有了核受体基因,在已测序的物种中,多孔动物门大堡礁海绵 Amphimedon queenslandica拥有两个核受体基因,栉水母动物门淡海栉水母 Mnemiopsis leidyi 也有两个核受体[5]扁盘动物门丝盘虫 Trichoplax adhaerens 有4个核受体,刺胞動物門星状海葵 Nematostella vectensis 有17个核受体[6]线虫动物门秀丽隐杆线虫的核受体基因达270个[7]黑腹果蝇与其它常见昆虫有21个[8]斑马鱼有73个[9]。人类、小鼠大鼠分别拥有48、49和47个核受体基因[10]

配体

[编辑]
核受体的各种配体,核受体通常以所结合的配体来命名

结合到核受体上的配体通常是亲脂性的物质,例如内源性的激素维生素AD,以及外源化合物英语xenobiotic内分泌干扰物等。由于核受体调节下游大量的基因表达,少量配体结合到核受体上就会引发生物体的显著反映。许多被调节的下游基因与疾病相关,因此美国食品药品监督局(FDA)批准的药物中约有13%以核受体为靶标[11]

有一大批核受体还是孤儿受体[12],即其内源性配体尚未发现(或者有候选但未达成共识)。其中包括FXRLXRPPAR,有大批代谢中间产物能与之结合,如脂肪酸胆汁酸类固醇等,但只有很低的亲和性。因此这些核受体很可能是体内代谢产物的感应器。其它一些孤儿核受体,如CARPXR等,很可能是外源化合物英语xenobiotic的感应器。这些核受体激活后能启动一系列细胞色素P450氧化酶的表达,来催化这些外源化合物的代谢[13]

参考文献

[编辑]
  1. ^ 核受体Nur77和RXR——治疗心血管疾病的新靶点. [2011-02-11]. (原始内容存档于2008-08-21). 
  2. ^ 张松波,周宏灏. 药物代谢性别差异及与核受体的关系 (PDF). 中国药理学通报. 2007, 23 (3): 292–4. 1001-1978(2007)03-0292-03 (中文). [永久失效連結]
  3. ^ 陈彬、周度金. 核受体转录辅激活蛋白:结构与功能 (PDF). 生命的化学. 2001, 21 (1): 18–21. 1000-1336(2001)0l-0018-4 (中文). [永久失效連結]
  4. ^ Escriva H, Langlois MC, Mendonça RL, Pierce R, Laudet V. Evolution and diversification of the nuclear receptor superfamily. Annals of the New York Academy of Sciences. May 1998, 839: 143–6. PMID 9629140. doi:10.1111/j.1749-6632.1998.tb10747.x. 
  5. ^ Reitzel AM, Pang K, Ryan JF, Mullikin JC, Martindale MQ, Baxevanis AD, Tarrant AM. Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily?. EvoDevo. February 2011, 2 (1): 3. PMC 3038971可免费查阅. PMID 21291545. doi:10.1186/2041-9139-2-3. 
  6. ^ Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, Gauthier ME, Ortlund EA, Degnan BM, Thornton JW. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biology. October 2010, 8 (10): e1000497. PMC 2950128可免费查阅. PMID 20957188. doi:10.1371/journal.pbio.1000497. 
  7. ^ Sluder AE, Maina CV. Nuclear receptors in nematodes: themes and variations. Trends in Genetics. April 2001, 17 (4): 206–13. PMID 11275326. doi:10.1016/S0168-9525(01)02242-9. 
  8. ^ Cheatle Jarvela, Alys M.; Pick, Leslie. The Function and Evolution of Nuclear Receptors in Insect Embryonic Development 125: 39–70. 2017. ISSN 0070-2153. doi:10.1016/bs.ctdb.2017.01.003. 
  9. ^ Schaaf, Marcel J M. Nuclear receptor research in zebrafish. Journal of Molecular Endocrinology. 2017, 59 (1): R65–R76. ISSN 0952-5041. doi:10.1530/JME-17-0031. 
  10. ^ Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Research. April 2004, 14 (4): 580–90. PMC 383302可免费查阅. PMID 15059999. doi:10.1101/gr.2160004. 
  11. ^ 引用错误:没有为名为Overington_2006的参考文献提供内容
  12. ^ 引用错误:没有为名为Benoit_2006的参考文献提供内容
  13. ^ 引用错误:没有为名为Mohan_2003的参考文献提供内容
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy