跳转到内容

自發過程

维基百科,自由的百科全书

自發過程[1](英語:spontaneous process),或自發程序[1],是系統隨時間釋放自由能、移往自由能更低且更加熱力學平衡的能量狀態的過程。[2][3]自由能變化的正負值取決於熱力學的測量傳統,當系統釋放自由能,系統自由能變化為負值,而外界自由能變化為正值。

隨著過程的條件不同,所採用的自由能也不相同。例如,當考慮恆溫恆壓過程時,應採用吉布斯自由能;而考慮恆溫恆容過程時,則採用亥姆霍茲自由能

由於降低系統自由能為自發過程的特色,因此該過程不需外界提供能量即可發生。

孤立系統的情形之下,系統邊界無任何能量交換,增加系統的方向為自發過程的方向。

概論

[编辑]

一般而言,過程的自發性只決定該過程是否「能夠」自發,但並不代表該過程「將會」發生。換句話說,自發性是必須的,但並不足以使過程發生。此外,自發性也無法決定該過程之速率快慢。比如說,於室溫常壓下,鑽石轉化成石墨是一個自發的過程。儘管如此,這個自發過程卻是極緩慢的。

由自由能決定自發性

[编辑]

當過程為恆溫恆壓時,能以吉布斯自由能決定其自發性,其數學式如下:

由上式可知,吉布斯自由能(G)變化量之正負取決於(H)、(S)之變化量以及絕對溫度(T)之大小。當絕對溫度之值等於焓變化量對熵變化量之比值時,吉布斯自由能之變化量為零。

當過程之吉布斯自由能變化量為:

  • 負值,該正向過程為自發。
  • 正值,該正向過程為非自發,但反向過程為自發。
  • 零,該過程處於熱力學平衡,系統隨時間無淨變化。

藉由上式,討論焓變化量與熵變化量對吉布斯自由能變化量之影響,分為四種情況:

  • 當熵變化量大於零,且焓變化量小於零,過程必然自發。
  • 當熵變化量小於零,且焓變化量大於零,過程必然不自發,但逆過程必然自發。
  • 當熵變化量大於零,且焓變化量大於零,過程於高溫狀態下自發、低溫狀態下不自發。
  • 當熵變化量小於零,且焓變化量小於零,過程於低溫狀態下自發、高溫狀態下不自發。

於後兩個情況下,可由焓變化量對熵變化量之比值大小,決定該過程之溫度為高溫或低溫。

由熵決定自發性

[编辑]

當利用熵變化量作為判斷過程自發性之函數時,需要特別留意系統與外界的定義。由熱力學第二定律,當孤立系統之熵值隨時間而增加,則該過程為自發。然而,當考慮之系統為開放或封閉時,以上敘述應修正為:總熵(包含系統熵與外界熵)需隨時間增加。其數學式應表示為:

相關條目

[编辑]

參考資料

[编辑]
  1. ^ 1.0 1.1 雙語詞彙、學術名詞暨辭書資訊網. 國家教育研究院. 2012 [2022-07-16]. (原始内容存档于2013-06-17). 
  2. ^ Spontaneous process页面存档备份,存于互联网档案馆) - Purdue University
  3. ^ Entropy and Spontaneous Reactions 互联网档案馆存檔,存档日期2009-12-13. - ChemEd DL
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy