跳转到内容

虛數單位

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自-i
虛數單位複平面的位置。橫軸是實數,豎軸是虛數
高斯整數導航
2i
−1+i i 1+i
−2 −1 0 1 2
−1−i i 1−i
−2i
各种各样的
基本

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

數學物理工程學裏,虛數單位是指二次方程的解。虽然沒有這樣的实数可以滿足這個二次方程,但可以通過虛數單位将實數系統延伸至复数系統。延伸的主要動機為有很多實係數多項式方程式無實數解。例如剛才提到的方程式就無實數解。可是倘若我們允許解答為虛數,那麼這方程式以及所有的多項式方程式都有解。虛數單位標記為,在电机工程和相关领域中则标记为,这是为了避免与电流(记为)混淆。

定義

[编辑]

虛數單位定義為二次方程式的兩個根中的一個。這方程式又可等價表達為:

由於實數的平方絕不可能是負數,我們假設有這麼一個數目解答,給它設定一個符號。很重要的一點是,是一個良定義的數學構造。

另外,虛數單位同樣可以表示為:

然而往往被誤認為是錯的,他們的證明的方法是:

因為,但是-1不等於1。
但請注意:成立的條件有,不能為負數

實數運算可以延伸至虛數與複數。當計算一個表達式時,我們只需要假設是一個未知數,然後依照的定義,替代任何的出現為-1。的更高整數冪數也可以替代為,或,根據下述方程式:

一般地,有以下的公式:

其中表示被4除的余数

i-i

[编辑]

方程有两个不同的解,它们都是有效的,且互为共轭虚数倒數。更加确切地,一旦固定了方程的一个解,那么(不等于)也是一个解,由于这个方程是的唯一的定义,因此这个定义表面上有歧义。然而,只要把其中一个解选定,并固定为,那么实际上是没有歧义的。这是因为,虽然在数量上不是相等的(它们是一对共轭虚数),但是之间没有质量上的区别(-1和+1就不是这样的)。在任何的等式中同時將所有i替換為-i,該等式仍成立。

正当的使用

[编辑]

虚数单位有时记为。但是,使用这种记法时需要非常谨慎,这是因为有些在实数范围内成立的公式在复数范围内并不成立。例如,公式仅对于非负的实数才成立。

假若這個關係在虚数仍成立,則會出現以下情況:

(不正确)
(不正确)
(不正确)

i的运算

[编辑]
虛數單位的平方根在複平面的位置

许多实数的运算都可以推广到,例如平方根对数三角函数。以下运算除第一项外,均为与有关的多值函数,在实际应用时必须指明函数的定义选择在黎曼面的哪一支。下面列出的仅仅是最常采用的黎曼面分支的计算结果。

这是因为:
使用算术平方根符号表示:
其解法為先假設兩實數,使得,求解[1]
  • 一个数的次幂为:
一个数的次方根为:
利用歐拉公式
代入不同的值,可計算出無限多的解。当最小的解是0.20787957635076...[2]
  • 为底的对数为:
1.5430806348152...
1.1752011936438...

在程式語言

[编辑]

註解

[编辑]
  1. ^ University of Toronto Mathematics Network: What is the square root of i?页面存档备份,存于互联网档案馆) URL retrieved March 26, 2007.
  2. ^ "The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, Page 26.
  3. ^ Rob Pike. Constants. The Go Blog. 2014-08-25 [2022-05-27]. (原始内容存档于2022-06-28). 

参见

[编辑]

参考文献

[编辑]
  • Paul J. Nahin, An Imaginary Tale, The Story of √-1, Princeton University Press, 1998

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy