跳转到内容

1

本页使用了标题或全文手工转换
维基百科,自由的百科全书
1
← 0 1 2 →
数表整数

<<  0 1 2 3 4 5 6 7 8 9 >>

<<   100‍  101‍  102‍  103‍  104‍  105‍  106‍  107‍  108‍  109>>

命名
小寫
大寫
序數詞第一
first
識別
種類整數
性質
質因數分解單位元
因數1
相反数−1
表示方式
1
花码一或〡
算筹
希腊数字Α´
羅馬數字
摩尔斯电码.----在维基数据编辑
巴比伦数字𒐕在维基数据编辑
玛雅数字在维基数据编辑
一进制1(1)
二进制1(2)
八进制1(8)
十二进制1(12)
十六进制1(16)
語言
希腊语前缀mono-/haplo-
拉丁語前缀uni-
英語one
阿拉伯文中库尔德语波斯语信德语印度斯坦语英语Urdu numerals١
阿萨姆语孟加拉语
漢語一/弌/壹
天城文
吉茲
格鲁吉亚语英语Georgian numeralsႠ/ⴀ/ა(Ani)
希伯來語א
日語一/壱
卡纳达语
高棉數字
马拉雅拉姆语
曼尼普尔语
泰文
泰米尔语
泰卢固语
高斯整數導航
2i
−1+i i 1+i
−2 −1 0 1 2
−1−i i 1−i
−2i

1)是02之间的自然数,是最小的正奇數

数学性质

[编辑]

在科學中

[编辑]

時間與曆法

[编辑]

在电子信号与信息系统中

[编辑]

在人類文化中

[编辑]

在軍事政治中

[编辑]

在體育中

[编辑]

注释

[编辑]
  1. ^ 1最初是被考虑为質數的:質數最初的定义为之被1和它自己整除的数。但为了因式分解理论的一致性,尤其是算术基本定理,后来質數被定义只有两个正因子(1和自己)的自然数。最后一个把1包括在質數裡的数学家昂利·勒贝格(于1899年
  2. ^ Pollack, Paul; Pomerance, Carl, Some problems of Erdős on the sum-of-divisors function, Transactions of the American Mathematical Society, Series B, 2016, 3: 1–26, ISSN 2330-0000, MR 3481968, doi:10.1090/btran/10 
  3. ^ JOHN H. E. COHN. 〈Square Fibonacci Numbers, Etc.〉. Bedford College, University of London, London, N.W.1. [2019-05-12]. (原始内容存档于2012-06-30). Theorem 3. If Fn = x2, then n = 0, ±1, 2 or 12. 
  4. ^ Royal Society of Chemistry - Visual Element Periodic Table. [2012-10-13]. (原始内容存档于2016-04-10). 

参见

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy