跳转到内容

PyMC

维基百科,自由的百科全书
PyMC
原作者PyMC开发团队
首次发布2013年5月4日 (2013-05-04)
当前版本5.16.2(2024年7月11日 (2024-07-11)
源代码库https://github.com/pymc-devs/pymc
编程语言Python
操作系统类Unix, Mac OS X, Microsoft Windows
平台Intel x86 – 32-bit, x64
类型统计包英语List of statistical software
许可协议 Apache License, Version 2.0
网站www.pymc.io

PyMC(曾叫做PyMC3[1])是一个Python包,用于贝叶斯统计建模概率机器学习,它聚焦于高级马尔可夫链蒙特卡洛法和变分拟合算法[2][3][4]

概述

[编辑]

PyMC曾经叫做PyMC3,不同于早先的使用Fortran扩展进行计算的PyMC2,它依靠Theano来进行自动微分、计算优化和动态C语言编译[3][5]。从版本3.8开始PyMC依据ArviZ英语ArviZ来进行数据可视化贝叶斯推断探索分析英语Exploratory data analysis[6]。PyMC和Stan英语Stan (software)是两个最流行的概率编程工具[7]

PyMC是开源项目,由社区开发并在财务上得到NumFocus赞助[8]。PyMC已经在很多领域中被用于解决推断问题,包括天文学[9][10]流行病学[11][12]分子生物学[13]晶体学[14][15]化学[16]生态学[17][18]心理学[19]

Theano于2017年宣布计划停止开发之后[20],PyMC团队曾评估采用TensorFlow Probability[21]作为计算后端[22],但是在2020年接管Theano的开发[23]。在2021年1月绝大部份的Theano代码基被重新建造,并增加了通过JAXNumba的编译,修订后的这个计算后端以新名字Aesara发行。PyMC团队在2021年6月将PyMC3更名为PyMC[1]。2022年11月28日,PyMC团队宣布采用从Aesara计划分叉出PyTensor[24]

推论引擎

[编辑]

PyMC实现了不基于梯度的和基于梯度的马尔可夫链蒙特卡洛(MCMC)算法用于贝叶斯推断和随机(Stochastic英语Stochastic),基于梯度的变分贝叶斯方法用于近似贝叶斯推断。

参见

[编辑]

引用

[编辑]
  1. ^ 1.0 1.1 PyMC Timeline. PyMC Timeline. [2021-01-20]. (原始内容存档于2018-05-20). 
  2. ^ Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 https://doi.org/10.7717/peerj-cs.55
  3. ^ 3.0 3.1 Martin, Osvaldo. Bayesian Analysis with Python. Packt Publishing Ltd. 2016: 31–60 [16 September 2017]. ISBN 9781785889851 (英语). 
  4. ^ Davidson-Pilon, Cameron. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. Addison-Wesley Professional. 2015-09-30. ISBN 9780133902921 (英语). 
  5. ^ Hilpisch, Yves. Python for Finance: Analyze Big Financial Data. O'Reilly Media, Inc. 2014-12-11. ISBN 9781491945391 (英语). 
  6. ^ ArviZ — Exploratory analysis of Bayesian models. [2023-09-21]. (原始内容存档于2023-10-11). 
  7. ^ The Algorithms Behind Probabilistic Programming. [2017-03-10]. (原始内容存档于2021-01-29). 
  8. ^ NumFOCUS Announces New Fiscally Sponsored Project: PyMC3. NumFOCUS | Open Code = Better Science. [2017-03-10]. (原始内容存档于2017-09-21). 
  9. ^ Greiner, J.; Burgess, J. M.; Savchenko, V.; Yu, H.-F. On the Fermi-GBM Event 0.4 s after GW150914. The Astrophysical Journal Letters. 2016, 827 (2): L38. Bibcode:2016ApJ...827L..38G. ISSN 2041-8205. arXiv:1606.00314可免费查阅. doi:10.3847/2041-8205/827/2/L38 (英语). 
  10. ^ Hilbe, Joseph M.; Souza, Rafael S. de; Ishida, Emille E. O. Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan. Cambridge University Press. 2017-04-30 [2021-01-20]. ISBN 9781108210744. (原始内容存档于2021-02-03) (英语). 
  11. ^ Brauner, Jan M.; Mindermann, Sören; Sharma, Mrinank; Johnston, David; Salvatier, John; Gavenčiak, Tom; Stephenson, Anna B.; Leech, Gavin; Altman, George; Mikulik, Vladimir; Norman, Alexander John; Monrad, Joshua Teperowski; Besiroglu, Tamay; Ge, Hong; Hartwick, Meghan A.; Teh, Yee Whye; Chindelevitch, Leonid; Gal, Yarin; Kulveit, Jan. Inferring the effectiveness of government interventions against COVID-19. Science. 2020-12-15 [2021-01-20]. doi:10.1126/science.abd9338. (原始内容存档于2021-02-07). 
  12. ^ Systrom, Kevin; Vladek, Thomas; Krieger, Mike. Rt.live Github repository. Rt.live. [10 January 2021]. (原始内容存档于2021-01-06). 
  13. ^ Wagner, Stacey D.; Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy. PLOS Genetics. 2016-09-28, 12 (9): e1006316. ISSN 1553-7404. PMC 5082313可免费查阅. PMID 27681373. doi:10.1371/journal.pgen.1006316. 
  14. ^ Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y.; Neutze, Richard; Katona, Gergely. Asymmetry in serial femtosecond crystallography data. Acta Crystallographica Section A. 2017-03-01, 73 (2): 93–101. ISSN 2053-2733. PMC 5332129可免费查阅. PMID 28248658. doi:10.1107/s2053273316018696 (英语). 
  15. ^ Katona, Gergely; Garcia-Bonete, Maria-Jose; Lundholm, Ida. Estimating the difference between structure-factor amplitudes using multivariate Bayesian inference. Acta Crystallographica Section A. 2016-05-01, 72 (3): 406–411. ISSN 2053-2733. PMC 4850660可免费查阅. PMID 27126118. doi:10.1107/S2053273316003430 (英语). 
  16. ^ Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.; Vila, Jorge A. Detection of methylation, acetylation and glycosylation of protein residues by monitoring13C chemical-shift changes: A quantum-chemical study. PeerJ. 2016-07-21, 4: e2253. ISSN 2167-8359. PMC 4963218可免费查阅. PMID 27547559. doi:10.7717/peerj.2253 (英语). 
  17. ^ Wang, Yan; Huang, Hong; Huang, Lida; Ristic, Branko. Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures. Atmospheric Environment. 2017, 152: 519–530. Bibcode:2017AtmEn.152..519W. doi:10.1016/j.atmosenv.2017.01.014. 
  18. ^ MacNeil, M. Aaron; Chong-Seng, Karen M.; Pratchett, Deborah J.; Thompson, Casssandra A.; Messmer, Vanessa; Pratchett, Morgan S. Age and Growth of An Outbreaking Acanthaster cf. solaris Population within the Great Barrier Reef. Diversity. 2017-03-14, 9 (1): 18. doi:10.3390/d9010018 (英语). 
  19. ^ Tünnermann, Jan; Scharlau, Ingrid. Peripheral Visual Cues: Their Fate in Processing and Effects on Attention and Temporal-Order Perception. Frontiers in Psychology. 2016, 7. ISSN 1664-1078. PMC 5052275可免费查阅. PMID 27766086. doi:10.3389/fpsyg.2016.01442 (英语). 
  20. ^ Lamblin, Pascal. MILA and the future of Theano. theano-users (邮件列表). 28 September 2017 [28 September 2017]. (原始内容存档于2011-01-22). 
  21. ^ TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. [2022-08-31]. (原始内容存档于2022-09-04). 
  22. ^ Developers, PyMC. Theano, TensorFlow and the Future of PyMC. PyMC Developers. 2018-05-17 [2019-01-25]. (原始内容存档于2020-08-06). 
  23. ^ The Future of PyMC3, or: Theano is Dead, Long Live Theano. PyMC Developers. [10 January 2021]. (原始内容存档于2021-01-15). 
  24. ^ PyMC forked Aesara to PyTensor. [2023-08-17]. (原始内容存档于2023-07-18). 
  25. ^ Hoffman, Matthew D.; Gelman, Andrew. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. April 2014, 15: pp. 1593–1623 [2021-01-20]. (原始内容存档于2020-08-11). 
  26. ^ Kucukelbir, Alp; Ranganath, Rajesh; Blei, David M. Automatic Variational Inference in Stan 1506 (3431). June 2015. Bibcode:2015arXiv150603431K. arXiv:1506.03431可免费查阅. 

延伸阅读

[编辑]

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy