Glückliche Zahl

natürliche Zahlen, die mit einem bestimmten Siebprinzip erzeugt werden

Glückliche Zahlen sind natürliche Zahlen, die mit einem bestimmten Siebprinzip erzeugt werden. Das Siebprinzip ähnelt dem Sieb des Eratosthenes zur Bestimmung von Primzahlen. Sie wurden erstmals von den Mathematikern Gardiner, Lazarus, Metropolis und Ulam im Jahr 1956 erwähnt.[1] Das Siebprinzip nennen sie Sieb von Josephus Flavius, weil es sehr an das Josephus-Problem erinnert.

Definition

Bearbeiten

Man beginnt mit einer Liste der positiven natürlichen Zahlen. Dann geht man die Zahlen der Liste durch, beginnend mit  , und streicht jeweils jede x-te Zahl. Im Unterschied zum Sieb des Eratosthenes werden beim Abzählen der zu streichenden Zahlen die schon gestrichenen nicht mitgezählt, sondern nur die noch in der Liste stehenden. Auch beim Durchgehen der Liste, um das nächste x zu erhalten, werden die gestrichenen übergangen.

Erläuterung

Bearbeiten
 
Diese Animation zeigt das Siebprinzip, mit dem man glückliche Zahlen erhält. Die roten übrig gebliebenen Zahlen sind die glücklichen Zahlen.

Im ersten Schritt streicht man jede zweite Zahl und damit alle geraden Zahlen.

Im zweiten Schritt ist die auf Zwei folgende Zahl in der Liste  , und es wird jede dritte gestrichen:

1 3 5 7 9 11 13 15 17 19
21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59
61 63 65 67 69 71 73 75 77 79
81 83 85 87 89 91 93 95 97 99

Im dritten Schritt ist die auf Drei folgende Zahl  , und es wird jede siebte gestrichen:

1 3 5 7 9 11 13 15 17 19
21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59
61 63 65 67 69 71 73 75 77 79
81 83 85 87 89 91 93 95 97 99

Nach der Sieben folgt die Zahl  , und jede neunte wird gestrichen:

1 3 5 7 9 11 13 15 17 19
21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59
61 63 65 67 69 71 73 75 77 79
81 83 85 87 89 91 93 95 97 99

Dann streicht man jede 13., und so weiter. Daraus ergibt sich die Folge der glücklichen Zahlen als all die Zahlen, die nie gestrichen werden:

  • 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, … (Folge A000959 in OEIS)

Eigenschaften

Bearbeiten
  • Es gibt unendlich viele glückliche Zahlen.
  • Sei   die  -te glückliche Zahl und   die  -te Primzahl. Dann gilt:[2]
  für ausreichend große  
Mit anderen Worten: ab einem gewissen Index   ist die  -te glückliche Zahl immer größer als die  -te Primzahl.
Sei   die Anzahl der glücklichen Zahlen, welche kleiner oder gleich   sind. Dann gilt:
 

Glückliche Primzahlen

Bearbeiten

Primzahlen  , die glückliche Zahlen sind, nennt man glückliche Primzahlen. Die glücklichen Primzahlen, welche kleiner als 1000 sind, lauten:

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997, … (Folge A031157 in OEIS)

Es ist unbekannt, ob es unendlich viele glückliche Primzahlen gibt. Es gibt auch eine zur Goldbachschen analoge Vermutung.

Siehe auch

Bearbeiten
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Verna Gardiner, Roger B. Lazarus, Nicholas Metropolis, Stanisław Marcin Ulam: On certain sequences of integers defined by sieves. In: Mathematics Magazine. 29. Jahrgang, Nr. 3, 1956, ISSN 0025-570X, S. 117–122, doi:10.2307/3029719.
  2. a b D. Hawkins, William Egbert Briggs: The lucky number theorem. In: Mathematics Magazine. 31. Jahrgang, Nr. 2, 1957, ISSN 0025-570X, S. 81–84,277–280, doi:10.2307/3029213.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy