Skip to main content

On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

  • 1894 Accesses

Abstract

Recently, several authors have advocated the use of rule learning algorithms to model multi-label data, as rules are interpretable and can be comprehended, analyzed, or qualitatively evaluated by domain experts. Many rule learning algorithms employ a heuristic-guided search for rules that model regularities contained in the training data and it is commonly accepted that the choice of the heuristic has a significant impact on the predictive performance of the learner. Whereas the properties of rule learning heuristics have been studied in the realm of single-label classification, there is no such work taking into account the particularities of multi-label classification. This is surprising, as the quality of multi-label predictions is usually assessed in terms of a variety of different, potentially competing, performance measures that cannot all be optimized by a single learner at the same time. In this work, we show empirically that it is crucial to trade off the consistency and coverage of rules differently, depending on which multi-label measure should be optimized by a model. Based on these findings, we emphasize the need for configurable learners that can flexibly use different heuristics. As our experiments reveal, the choice of the heuristic is not straight-forward, because a search for rules that optimize a measure locally does usually not result in a model that maximizes that measure globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code available at https://github.com/mrapp-ke/RuleGeneration.

  2. 2.

    We use the random forest implementation provided by Weka 3.9.3, which is available at https://www.cs.waikato.ac.nz/ml/weka.

  3. 3.

    Data sets and detailed statistics available at http://mulan.sourceforge.net/datasets-mlc.html.

References

  1. Allamanis, M., Tzima, F.A., Mitkas, P.A.: Effective rule-based multi-label classification with learning classifier systems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 466–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_48

    Chapter  Google Scholar 

  2. Arunadevi, J., Rajamani, V.: An evolutionary multi label classification using associative rule mining for spatial preferences. In: IJCA Special Issue on Artificial Intelligence Techniques-Novel Approaches and Practical Applications (2011)

    Article  Google Scholar 

  3. Ávila-Jiménez, J.L., Gibaja, E., Ventura, S.: Evolving multi-label classification rules with gene expression programming: a preliminary study. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS (LNAI), vol. 6077, pp. 9–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13803-4_2

    Chapter  Google Scholar 

  4. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Cano, A., Zafra, A., Gibaja, E.L., Ventura, S.: A grammar-guided genetic programming algorithm for multi-label classification. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 217–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_19

    Chapter  Google Scholar 

  7. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on International Conference on Machine Learning (1995)

    Chapter  Google Scholar 

  8. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11573036_42

    Chapter  Google Scholar 

  9. Flach, P.A.: The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In: Proceedings of the 20th International Conference on Machine Learning (2003)

    Google Scholar 

  10. Fürnkranz, J., Flach, P.A.: An analysis of rule evaluation metrics. In: Proceedings of the 20th International Conference on Machine Learning (2003)

    Google Scholar 

  11. Fürnkranz, J., Flach, P.: An analysis of stopping and filtering criteria for rule learning. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 123–133. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_14

    Chapter  MATH  Google Scholar 

  12. Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning-towards a better understanding of covering algorithms. Mach. Learn. 58(1), 39–77 (2005)

    Article  Google Scholar 

  13. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  14. Janssen, F., Fürnkranz, J.: An empirical investigation of the trade-off between consistency and coverage in rule learning heuristics. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 40–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88411-8_7

    Chapter  Google Scholar 

  15. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach. Learn. 78(3), 343–379 (2010)

    Article  MathSciNet  Google Scholar 

  16. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  17. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  18. Li, B., Li, H., Wu, M., Li, P.: Multi-label classification based on association rules with application to scene classification. In: The 9th International Conference for Young Computer Scientists (2008)

    Google Scholar 

  19. Mencía, E.L., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–216 (2016)

    Article  MathSciNet  Google Scholar 

  20. Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing (2007)

    Google Scholar 

  21. Rapp, M., Loza Mencía, E., Fürnkranz, J.: Exploiting anti-monotonicity of multi-label evaluation measures for inducing multi-label rules. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_3

    Chapter  Google Scholar 

  22. Thabtah, F.A., Cowling, P., Peng, Y.: MMAC: a new multi-class, multi-label associative classification approach. In: 4th IEEE International Conference on Data Mining (2004)

    Google Scholar 

  23. Thabtah, F.A., Cowling, P., Peng, Y.: Multiple labels associative classification. Knowl. Inf. Syst. 9(1), 109–129 (2006)

    Article  Google Scholar 

  24. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: International Society for Music Information Retrieval (2008)

    Google Scholar 

  25. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  26. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG) (grant number FU 580/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapp, M., Loza Mencía, E., Fürnkranz, J. (2019). On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy