Abstract
Recently, several authors have advocated the use of rule learning algorithms to model multi-label data, as rules are interpretable and can be comprehended, analyzed, or qualitatively evaluated by domain experts. Many rule learning algorithms employ a heuristic-guided search for rules that model regularities contained in the training data and it is commonly accepted that the choice of the heuristic has a significant impact on the predictive performance of the learner. Whereas the properties of rule learning heuristics have been studied in the realm of single-label classification, there is no such work taking into account the particularities of multi-label classification. This is surprising, as the quality of multi-label predictions is usually assessed in terms of a variety of different, potentially competing, performance measures that cannot all be optimized by a single learner at the same time. In this work, we show empirically that it is crucial to trade off the consistency and coverage of rules differently, depending on which multi-label measure should be optimized by a model. Based on these findings, we emphasize the need for configurable learners that can flexibly use different heuristics. As our experiments reveal, the choice of the heuristic is not straight-forward, because a search for rules that optimize a measure locally does usually not result in a model that maximizes that measure globally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code available at https://github.com/mrapp-ke/RuleGeneration.
- 2.
We use the random forest implementation provided by Weka 3.9.3, which is available at https://www.cs.waikato.ac.nz/ml/weka.
- 3.
Data sets and detailed statistics available at http://mulan.sourceforge.net/datasets-mlc.html.
References
Allamanis, M., Tzima, F.A., Mitkas, P.A.: Effective rule-based multi-label classification with learning classifier systems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 466–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_48
Arunadevi, J., Rajamani, V.: An evolutionary multi label classification using associative rule mining for spatial preferences. In: IJCA Special Issue on Artificial Intelligence Techniques-Novel Approaches and Practical Applications (2011)
Ávila-Jiménez, J.L., Gibaja, E., Ventura, S.: Evolving multi-label classification rules with gene expression programming: a preliminary study. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS (LNAI), vol. 6077, pp. 9–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13803-4_2
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Cano, A., Zafra, A., Gibaja, E.L., Ventura, S.: A grammar-guided genetic programming algorithm for multi-label classification. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 217–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_19
Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on International Conference on Machine Learning (1995)
Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11573036_42
Flach, P.A.: The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In: Proceedings of the 20th International Conference on Machine Learning (2003)
Fürnkranz, J., Flach, P.A.: An analysis of rule evaluation metrics. In: Proceedings of the 20th International Conference on Machine Learning (2003)
Fürnkranz, J., Flach, P.: An analysis of stopping and filtering criteria for rule learning. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 123–133. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_14
Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning-towards a better understanding of covering algorithms. Mach. Learn. 58(1), 39–77 (2005)
Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7
Janssen, F., Fürnkranz, J.: An empirical investigation of the trade-off between consistency and coverage in rule learning heuristics. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 40–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88411-8_7
Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach. Learn. 78(3), 343–379 (2010)
Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22
Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Li, B., Li, H., Wu, M., Li, P.: Multi-label classification based on association rules with application to scene classification. In: The 9th International Conference for Young Computer Scientists (2008)
Mencía, E.L., Janssen, F.: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–216 (2016)
Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing (2007)
Rapp, M., Loza Mencía, E., Fürnkranz, J.: Exploiting anti-monotonicity of multi-label evaluation measures for inducing multi-label rules. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_3
Thabtah, F.A., Cowling, P., Peng, Y.: MMAC: a new multi-class, multi-label associative classification approach. In: 4th IEEE International Conference on Data Mining (2004)
Thabtah, F.A., Cowling, P., Peng, Y.: Multiple labels associative classification. Knowl. Inf. Syst. 9(1), 109–129 (2006)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: International Society for Music Information Retrieval (2008)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)
Acknowledgments
This research was supported by the German Research Foundation (DFG) (grant number FU 580/11).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rapp, M., Loza Mencía, E., Fürnkranz, J. (2019). On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-33778-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33777-3
Online ISBN: 978-3-030-33778-0
eBook Packages: Computer ScienceComputer Science (R0)