Abstract
This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem.
We discuss a reconstruction in the standard
References
[1] M. Ainsworth, A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 189–204. 10.1137/06067331XSearch in Google Scholar
[2] M. Ainsworth and J. T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993), no. 1, 23–50. 10.1007/BF01385738Search in Google Scholar
[3] T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943–972. Search in Google Scholar
[4] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32. 10.1051/m2an/1985190100071Search in Google Scholar
[5] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991), 641–787. 10.1016/S1570-8659(05)80042-0Search in Google Scholar
[6] R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method, Numer. Math. 111 (2008), no. 1, 35–54. 10.1007/s00211-008-0180-8Search in Google Scholar
[7] R. Becker, S. Mao and Z. Shi, A convergent nonconforming adaptive finite element method with quasi-optimal complexity, SIAM J. Numer. Anal. 47 (2010), no. 6, 4639–4659. 10.1137/070701479Search in Google Scholar
[8] F. Bertrand, D. Boffi and R. Stenberg, A posteriori error analysis for the mixed laplace eigenvalue problem: Investigations for the BDM-element, to appear. 10.1002/pamm.201900155Search in Google Scholar
[9] F. Bertrand, M. Moldenhauer and G. Starke, A posteriori error estimation for planar linear elasticity by stress reconstruction, Comput. Methods Appl. Math. (2018), 10.1515/cmam-2018-0004. 10.1515/cmam-2018-0004Search in Google Scholar
[10] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. 10.1017/S0962492910000012Search in Google Scholar
[11] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013. 10.1007/978-3-642-36519-5Search in Google Scholar
[12] D. Boffi, D. Gallistl, F. Gardini and L. Gastaldi, Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form, Math. Comp. 86 (2017), no. 307, 2213–2237. 10.1090/mcom/3212Search in Google Scholar
[13] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem, IMA J. Numer. Anal. 37 (2017), no. 4, 1710–1732. Search in Google Scholar
[14] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, A posteriori error estimates for Maxwell’s eigenvalue problem, J. Sci. Comput. 78 (2019), no. 2, 1250–1271. 10.1007/s10915-018-0808-5Search in Google Scholar
[15] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651–672. 10.1090/S0025-5718-07-02080-7Search in Google Scholar
[16] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. 10.1016/j.camwa.2013.12.003Search in Google Scholar PubMed PubMed Central
[17] C. Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comp. 75 (2006), no. 255, 1033–1042. 10.1090/S0025-5718-06-01829-1Search in Google Scholar
[18] C. Carstensen and H. Rabus, An optimal adaptive mixed finite element method, Math. Comp. 80 (2011), no. 274, 649–667. 10.1090/S0025-5718-2010-02397-XSearch in Google Scholar
[19] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. 10.1137/07069047XSearch in Google Scholar
[20] L. Chen, M. Holst and J. Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comp. 78 (2009), no. 265, 35–53. 10.1090/S0025-5718-08-02155-8Search in Google Scholar
[21] M. Dauge, https://perso.univ-rennes1.fr/monique.dauge/benchmax.html. Search in Google Scholar
[22] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. 10.1007/978-3-642-22980-0Search in Google Scholar
[23] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. 10.1137/0733054Search in Google Scholar
[24] J. Douglas, Jr. and J. E. Roberts, Mixed finite element methods for second order elliptic problems, Mat. Apl. Comput. 1 (1982), no. 1, 91–103. Search in Google Scholar
[25] R. G. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), no. 8, 1165–1178. 10.1142/S021820259900052XSearch in Google Scholar
[26] R. G. Durán, C. Padra and R. Rodríguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models Methods Appl. Sci. 13 (2003), no. 8, 1219–1229. 10.1142/S0218202503002878Search in Google Scholar
[27] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058–1081. 10.1137/130950100Search in Google Scholar
[28] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters, Numer. Math. 130 (2015), no. 3, 467–496. 10.1007/s00211-014-0671-8Search in Google Scholar
[29] F. Gardini, Mixed approximation of eigenvalue problems: A superconvergence result, M2AN Math. Model. Numer. Anal. 43 (2009), no. 5, 853–865. 10.1007/978-3-540-34288-5_17Search in Google Scholar
[30] J. Gedicke and A. Khan, Arnold-Winther mixed finite elements for Stokes eigenvalue problems, SIAM J. Sci. Comput. 40 (2018), no. 5, A3449–A3469. 10.1137/17M1162032Search in Google Scholar
[31] A. Hannukainen, R. Stenberg and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math. 122 (2012), no. 4, 725–769. 10.1007/s00211-012-0472-xSearch in Google Scholar
[32] K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl. Math. Comput. 218 (2012), no. 24, 11820–11831. 10.1016/j.amc.2012.04.084Search in Google Scholar
[33] V. A. Kozlov, V. G. Maz’ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monogr. 52, American Mathematical Society, Providence, 1997. Search in Google Scholar
[34] P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485–509. 10.1137/0720033Search in Google Scholar
[35] C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), no. 256, 1659–1674. 10.1090/S0025-5718-06-01872-2Search in Google Scholar
[36] P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. 10.1137/S0036142999360044Search in Google Scholar
[37] R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction, Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin (2009), 409–542. 10.1007/978-3-642-03413-8_12Search in Google Scholar
[38] R. H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Multiscale and Adaptivity: Modeling, Numerics and Applications, Lecture Notes in Math. 2040, Springer, Heidelberg (2012), 125–225. 10.1007/978-3-642-24079-9_3Search in Google Scholar
[39] P. Oswald, Multilevel Finite Element Approximation. Theory and Applications, B. G. Teubner, Stuttgart, 1994. 10.1007/978-3-322-91215-2Search in Google Scholar
[40] W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. 10.1090/qam/25902Search in Google Scholar
[41] R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151–167. 10.1051/m2an/1991250101511Search in Google Scholar
[42] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. 10.1007/s10208-005-0183-0Search in Google Scholar
[43] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University, Oxford, 2013. 10.1093/acprof:oso/9780199679423.001.0001Search in Google Scholar
[44] M. Vohralík, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. 45 (2007), no. 4, 1570–1599. 10.1137/060653184Search in Google Scholar
[45] M. Vohralík, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), no. 272, 2001–2032. 10.1090/S0025-5718-2010-02375-0Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston