Transient Dynamics in the Random Growth and Reset Model
Abstract
:1. Introduction
2. Master Equation for Unidirectional Growth with Reset
3. Stationary Solution
3.1. Constant Growth and Reset Rates
3.2. Linear Growth Rate and Constant Reset Rate
4. Convergence towards Stationarity for Constant Reset and Growth Rates
4.1. The Recursive Substitution Method
4.2. Generating Function Method
5. Constant Reset Rate and Linearly Increasing Growth Rate
5.1. The Recursive Substitution Method
5.2. Generating Function Method
6. Discussion on the Convergence Properties
6.1. Constant Growth and Reset Rate
6.2. Constant Reset Rate and Linearly Increasing Growth Rate
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Baxter, R.J. Exactly Solved models in Statistical Physics; Academic Press: San Diego, CA, USA, 1982. [Google Scholar]
- Mahnke, R.; Kaupuzs, J.; Lubashevsky, I. Physics of Stochastic Processes: How Randomness Acts in Time; Willey-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Haag, G. Modelling with the Master Equation. Solution Methods and Applications in Social and Natural Sciences; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Biró, T.S.; Néda, Z. Dynamical stationarity as a result of sustained random growth. Phys. Rev. E 2017, 95, 032130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biró, T.S.; Néda, Z. Unidirectional random growth with resetting. Phys. Stat. Mech. Appl. 2018, 499, 335. [Google Scholar] [CrossRef] [Green Version]
- Néda, Z.; Varga, L.; Biró, T.S. Science and Facebook: The same popularity law. PLoS ONE 2017, 17, e0179656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Néda, Z.; Gere, I.; Biró, T.S.; Tóth, G.; Derzsy, N. Scaling in income inequalities and its dynamical origin. Phys. Stat. Mech. Appl. 2020, 549, 124491. [Google Scholar] [CrossRef] [Green Version]
- Biró, T.S.; Néda, Z.; Telcs, A. Entropic Divergence and Entropy Related to Nonlinear Master Equations. Entropy 2019, 21, 993. [Google Scholar] [CrossRef] [Green Version]
- Biró, T.S.; Néda, Z. Equilibrium distributions in entropy driven balanced processes. Phys. Stat. Mech. Appl. 2017, 474, 355. [Google Scholar] [CrossRef] [Green Version]
- Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Perc, M. The Matthew effect in empirical data. J. R. Soc. Interface 2014, 11, 20140378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, J.O. The Generalized Waring Distribution Applied to Accident Theory. J. Roy. Stat. Soc. A 1968, 131, 202. [Google Scholar] [CrossRef]
- Zipf, G.K. Human Behavior and Principle of Least Effort; Addison-Wesley: Cambridge, MA, USA, 1949. [Google Scholar]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemopray Phys. 2015, 46, 323. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Hatano, N. Universality of Zipf’s law. J. Phys. Soc. Jpn. 2002, 71, 1211. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S. Boltzmann’s H-Theorem. Nature 1937, 139, 931. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biró, T.S.; Csillag, L.; Néda, Z. Transient Dynamics in the Random Growth and Reset Model. Entropy 2021, 23, 306. https://doi.org/10.3390/e23030306
Biró TS, Csillag L, Néda Z. Transient Dynamics in the Random Growth and Reset Model. Entropy. 2021; 23(3):306. https://doi.org/10.3390/e23030306
Chicago/Turabian StyleBiró, Tamás S., Lehel Csillag, and Zoltán Néda. 2021. "Transient Dynamics in the Random Growth and Reset Model" Entropy 23, no. 3: 306. https://doi.org/10.3390/e23030306
APA StyleBiró, T. S., Csillag, L., & Néda, Z. (2021). Transient Dynamics in the Random Growth and Reset Model. Entropy, 23(3), 306. https://doi.org/10.3390/e23030306