Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K
Abstract
:1. Introduction
2. Materials and Methods
T/K | C°p,m/ J·K−1·mol−1 | T/K | C°p,m/ J·K−1·mol−1 | T/K | C°p,m/ J·K−1·mol−1 |
---|---|---|---|---|---|
Series 1 | |||||
5.16 | 2.56 | 17.06 | 34.24 | 51.44 | 134.6 |
5.31 | 2.75 | 17.56 | 35.74 | 52.62 | 172.6 |
5.55 | 3.20 | 18.05 | 37.35 | 53.87 | 149.8 |
5.77 | 3.52 | 18.55 | 38.92 | 55.27 | 124.6 |
5.99 | 3.96 | 19.05 | 40.43 | 56.61 | 125.8 |
6.24 | 4.30 | 19.55 | 42.09 | 57.89 | 126.6 |
6.53 | 4.84 | 20.05 | 43.76 | 59.16 | 127.9 |
6.83 | 5.43 | 20.89 | 46.08 | 60.44 | 128.6 |
7.13 | 6.04 | 22.04 | 49.71 | 61.72 | 129.6 |
7.44 | 6.61 | 23.21 | 53.26 | 62.99 | 130.7 |
7.75 | 7.32 | 24.38 | 56.79 | 64.27 | 131.3 |
8.07 | 8.00 | 25.57 | 59.98 | 65.54 | 132.4 |
8.40 | 8.72 | 26.76 | 63.21 | 66.82 | 132.8 |
8.72 | 9.51 | 27.96 | 66.51 | 68.10 | 133.6 |
9.05 | 10.3 | 29.17 | 69.85 | 69.38 | 134.2 |
9.38 | 11.1 | 30.37 | 73.14 | 71.10 | 135.4 |
9.72 | 12.0 | 31.59 | 76.28 | 73.26 | 136.5 |
10.06 | 12.9 | 32.82 | 79.41 | 75.42 | 137.6 |
10.45 | 13.9 | 34.04 | 82.20 | 77.57 | 139.0 |
10.90 | 15.2 | 35.27 | 85.00 | 79.74 | 140.3 |
11.35 | 16.5 | 36.50 | 87.29 | 81.90 | 141.5 |
11.81 | 17.9 | 37.74 | 89.90 | 84.06 | 142.9 |
12.27 | 19.2 | 38.98 | 92.47 | 86.23 | 144.2 |
12.73 | 20.8 | 40.23 | 94.76 | 88.40 | 145.7 |
13.20 | 22.2 | 41.48 | 97.28 | 90.57 | 147.1 |
13.67 | 23.7 | 42.73 | 100.2 | 92.74 | 147.9 |
14.14 | 25.1 | 43.97 | 103.3 | 94.91 | 149.3 |
14.62 | 26.6 | 45.22 | 105.8 | 97.08 | 150.4 |
15.11 | 27.97 | 46.47 | 108.3 | 99.26 | 151.9 |
15.59 | 29.58 | 47.73 | 110.4 | 101.63 | 153.3 |
16.08 | 31.09 | 48.98 | 115.6 | 104.22 | 154.2 |
16.57 | 32.75 | 50.21 | 128.0 | ||
Series 2 | |||||
44.57 | 104.0 | 49.05 | 114.7 | 52.90 | 176.5 |
45.42 | 105.8 | 49.93 | 124.5 | 54.48 | 127.4 |
46.33 | 107.8 | 50.84 | 129.8 | 55.51 | 123.9 |
47.23 | 110.1 | 51.74 | 138.4 | 57.70 | 126.9 |
48.13 | 112.3 | 52.50 | 171.7 | 59.21 | 128.2 |
Series 3 | |||||
84.76 | 143.3 | 156.2 | 200.20 | 224.31 | 175.8 |
86.66 | 144.8 | 158.8 | 204.09 | 226.91 | 175.9 |
88.35 | 145.7 | 161.4 | 208.57 | 229.51 | 177.0 |
90.04 | 146.5 | 164.0 | 213.7 | 232.12 | 177.2 |
91.72 | 147.6 | 166.6 | 219.2 | 234.75 | 177.2 |
93.41 | 147.8 | 169.2 | 226.3 | 237.38 | 178.6 |
95.08 | 149.5 | 171.9 | 227.4 | 240.00 | 178.9 |
96.78 | 150.2 | 174.6 | 173.0 | 242.61 | 180.0 |
99.54 | 151.6 | 177.4 | 169.6 | 245.22 | 180.6 |
102.49 | 153.5 | 180.0 | 169.6 | 247.86 | 180.9 |
105.07 | 155.0 | 182.6 | 169.4 | 250.48 | 181.6 |
107.65 | 156.5 | 185.3 | 169.3 | 253.10 | 182.1 |
110.23 | 158.0 | 187.9 | 169.6 | 255.72 | 182.8 |
112.81 | 159.9 | 190.5 | 169.9 | 258.34 | 183.5 |
115.40 | 161.7 | 193.1 | 170.2 | 260.97 | 184.6 |
118.00 | 163.2 | 195.7 | 170.5 | 263.62 | 185.4 |
120.57 | 165.1 | 198.3 | 170.8 | 266.26 | 186.6 |
131.30 | 174.1 | 200.9 | 171.6 | 268.88 | 188.4 |
134.33 | 176.2 | 203.5 | 171.9 | 271.50 | 194.0 |
137.46 | 179.6 | 206.1 | 172.3 | 274.12 | 194.3 |
140.49 | 182.8 | 208.7 | 172.8 | 276.77 | 188.6 |
143.09 | 185.9 | 211.3 | 173.3 | 279.42 | 186.6 |
145.70 | 188.0 | 213.9 | 173.7 | 282.06 | 186.9 |
148.31 | 190.4 | 216.5 | 174.2 | 284.70 | 187.2 |
150.93 | 192.9 | 219.1 | 174.4 | 287.34 | 187.0 |
153.54 | 196.7 | 221.7 | 175.3 | 289.97 | 188.3 |
Series 4 | |||||
173.77 | 183.3 | 220.70 | 174.9 | 277.37 | 186.6 |
177.43 | 169.3 | 223.74 | 175.5 | 280.60 | 185.9 |
180.54 | 169.2 | 226.84 | 176.3 | 283.83 | 186.1 |
183.62 | 169.5 | 229.92 | 177.2 | 287.06 | 186.4 |
186.70 | 169.6 | 233.04 | 177.5 | 291.10 | 187.2 |
189.78 | 169.8 | 236.18 | 178.5 | 293.54 | 187.2 |
192.86 | 169.7 | 239.31 | 179.2 | 296.79 | 187.6 |
195.93 | 170.2 | 242.43 | 180.0 | 300.04 | 187.8 |
199.01 | 170.8 | 245.56 | 180.2 | 303.93 | 187.9 |
202.08 | 171.5 | 248.72 | 180.8 | 308.43 | 188.3 |
205.16 | 172.0 | 251.86 | 181.6 | 313.84 | 189.4 |
208.24 | 172.5 | 255.01 | 182.2 | 318.91 | 190.1 |
211.33 | 172.8 | 258.17 | 183.2 | 323.13 | 190.9 |
214.42 | 173.3 | 261.33 | 184.0 | 327.41 | 191.1 |
217.51 | 174.2 | 264.50 | 185.3 | 331.66 | 191.7 |
220.60 | 174.2 | 267.68 | 187.5 | 335.91 | 192.2 |
223.74 | 175.5 | 270.85 | 194.3 | 340.15 | 191.8 |
217.51 | 174.2 | 274.14 | 191.9 | 344.39 | 194.0 |
Series 5 | |||||
119.77 | 164.5 | 185.93 | 171.6 | 265.82 | 192.5 |
122.18 | 166.2 | 188.99 | 172.2 | 268.91 | 196.1 |
124.25 | 167.2 | 192.06 | 172.1 | 272.00 | 201.5 |
126.31 | 169.6 | 195.12 | 172.8 | 275.12 | 195.2 |
128.36 | 174.8 | 198.18 | 173.2 | 278.26 | 193.5 |
130.40 | 179.3 | 201.23 | 174.0 | 281.39 | 194.3 |
132.45 | 178.1 | 204.31 | 174.5 | 284.53 | 191.5 |
134.52 | 178.8 | 207.37 | 174.9 | 287.67 | 191.1 |
136.57 | 183.6 | 210.43 | 175.4 | 290.83 | 188.6 |
138.60 | 186.4 | 213.49 | 176.1 | 294.00 | 188.3 |
140.59 | 187.6 | 216.55 | 176.8 | 297.17 | 187.8 |
142.78 | 182.6 | 219.61 | 177.3 | 300.35 | 188.4 |
145.02 | 182.7 | 222.67 | 178.4 | 304.13 | 189.5 |
147.19 | 184.0 | 225.73 | 179.3 | 308.31 | 189.2 |
149.36 | 185.3 | 228.79 | 180.8 | 312.49 | 189.7 |
151.53 | 187.3 | 231.86 | 181.2 | 316.67 | 190.1 |
154.68 | 190.3 | 234.94 | 182.6 | 320.87 | 190.6 |
158.23 | 193.7 | 238.02 | 183.1 | 325.07 | 190.7 |
161.27 | 197.3 | 241.09 | 183.4 | 329.26 | 191.6 |
164.32 | 201.5 | 244.16 | 183.8 | 333.45 | 191.8 |
167.36 | 205.8 | 247.25 | 185.0 | 337.63 | 192.8 |
170.41 | 211.8 | 250.33 | 186.0 | 341.80 | 194.8 |
173.53 | 184.3 | 253.45 | 187.4 | 345.97 | 194.8 |
176.70 | 171.0 | 256.54 | 187.7 | 350.08 | 194.5 |
179.80 | 171.4 | 259.63 | 189.2 | ||
182.87 | 171.4 | 262.72 | 190.7 | ||
Series 6 | |||||
101.53 | 151.9 | 179.46 | 171.5 | 258.04 | 190.5 |
104.98 | 155.4 | 183.83 | 172.0 | 262.44 | 192.5 |
107.99 | 157.1 | 188.18 | 172.7 | 266.85 | 194.5 |
110.99 | 159.4 | 192.54 | 173.0 | 271.24 | 202.5 |
116.70 | 164.2 | 196.88 | 174.0 | 275.67 | 196.4 |
121.66 | 168.5 | 201.23 | 174.9 | 280.14 | 195.9 |
125.96 | 172.1 | 205.58 | 175.7 | 284.60 | 192.8 |
130.22 | 181.9 | 209.93 | 176.7 | 289.17 | 191.5 |
134.52 | 182.5 | 214.28 | 177.2 | 293.67 | 189.0 |
138.82 | 188.7 | 218.66 | 178.8 | 298.18 | 188.9 |
143.13 | 190.3 | 223.02 | 179.8 | 303.49 | 190.1 |
148.24 | 183.8 | 227.37 | 181.9 | 309.40 | 189.9 |
153.27 | 186.7 | 231.71 | 183.1 | 315.33 | 190.1 |
157.59 | 190.9 | 236.09 | 184.9 | 321.27 | 190.6 |
161.91 | 195.5 | 240.48 | 185.3 | 327.22 | 190.9 |
166.22 | 200.9 | 244.86 | 187.2 | 333.16 | 192.4 |
170.53 | 207.8 | 249.26 | 187.2 | 339.11 | 194.5 |
174.98 | 174.2 | 253.65 | 188.9 | 345.01 | 195.2 |
3. Results and Discussion
3.1. Heat Capacity
3.2. Standard Thermodynamic Functions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chart of Best Research-Cell Efficiencies Provided by NREL. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 16 December 2021).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic C ells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Weber, D. CH3NH3PbX3. a Pb(II)-System with Cubic Perovskite Structure. Z. Naturforsch. 1978, 33b, 1443–1445. [Google Scholar] [CrossRef]
- Poglitsch, A.; Weber, D. Dynamic disorder in Methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378. [Google Scholar] [CrossRef]
- Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogenoplumbates (II). J. Phys. Chem. Solids 1990, 51, 1383–1395. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions. High Mobilities. and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T.J.; Grátzel, M.; Hagfeldt, A. The Rapid Evolution of Highly Efficient Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Park, J.S.; Wei, S.H.; Berry, J.J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Abdelhady, A.L.; Maculana, G.; Bakr, O.M. Retrograde Solubility of Formamidinium and Methylammonium Lead Halide Perovskites enabling Rapid Single Crystal Growth. Chem. Commun. 2015, 51, 17658–17661. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, D.; Phung, N.; Kosasih, F.U.; Di Giacomo, F.; Matteocci, F.; Smith, J.A.; Flatken, M.A.; Köbler, H.; Cruz, S.H.T.; Mattoni, A. Ion Migration-Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2000310. [Google Scholar] [CrossRef]
- Dai, J.; Fu, Y.; Manger, L.H.; Rea, M.T.; Hwang, L.; Goldsmith, R.H.; Jin, S. Carrier Decay Properties of Mixed Cation Formamidinium-Methylammonium Lead Iodide Perovskite [HC(NH2)2]1–x[CH3NH3]xPbI3 Nanorods. J. Phys. Chem. Lett. 2016, 5036–5043. [Google Scholar] [CrossRef]
- Charles, B.; Dillon, J.; Weber, O.J.; Islam, M.S.; Weller, M.T. Understanding the Stability of Mixed A-Cation Lead Iodide Perovskites. J. Mater. Chem. A 2017, 5, 22495–22499. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Kim, T.Y.; Oh, J.H.; Choi, K.S.; Kim, Y.J.; Kim, S.Y. Cesium Lead Iodide Solar Cells Controlled by Annealing Temperature. Phys. Chem. Chem. Phys. 2017, 19, 6257–6263. [Google Scholar] [CrossRef]
- Han, Q.; Bae, S.H.; Sun, P.; Hsieh, Y.T.; Yang, Y.; Rim, Y.S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G.; et al. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural. Optical. and Electrical Properties. Adv. Mater. 2016, 28, 2253–2258. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef]
- Brunetti, B.; Cavallo, C.; Ciccioli, A.; Gigli, G.; Latini, A. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Sci. Rep. 2016, 6, 31896. [Google Scholar] [CrossRef] [PubMed]
- Ciccioli, A.; Latini, A. Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH3NH3PbX3. J. Phys. Chem. Lett. 2018, 9, 3756–3765. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Gigli, G.; Ciccioli, A. A Study on the Nature of the Thermal Decomposition of Methylammonium Lead Iodide Perovskite. CH3NH3PbI3: An Attempt to Rationalise Contradictory Experimental Results. Sustain. Energy Fuels 2017, 1, 1351–1357. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Hawash, Z.; Raga, S.R.; Ono, L.K.; Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406–3410. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, A.; Juarez-Perez, E.J.; Castro-García, S.; Sánchez-Andújar, M.; Ono, L.K.; Jiang, Y.; Qi, Y. Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods 2018, 2, 1800242. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Perez, E.J.; Ono, L.K.; Uriarte, I.; Cocinero, E.J.; Qi, Y. Degradation Mechanism and Relative Stability of Methylammonium Halide Based Perovskites Analyzed on the Basis of Acid-Base Theory. ACS Appl. Mater. Interfaces 2019, 11, 12586–12593. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Novendra, N.; Navrotsky, A. Energetics. Structures. and Phase Transitions of Cubic and Orthorhombic Cesium Lead Iodide (CsPbI3) Polymorphs. J. Am. Chem. Soc. 2019, 141, 14501–14504. [Google Scholar] [CrossRef]
- Tsvetkov, D.S.; Mazurin, M.O.; Sereda, V.V.; Ivanov, I.L.; Malyshkin, D.A.; Zuev, A.Y. Formation Thermodynamics. Stability. and Decomposition Pathways of CsPbX3 (X = Cl. Br. I) Photovoltaic Materials. J. Phys. Chem. C 2020, 124, 4252–4260. [Google Scholar] [CrossRef]
- Wang, B.; Navrotsky, A. Thermodynamics of cesium lead halide (CsPbX3. x = I. Br. Cl) perovskites. Thermochim. Acta 2021, 695, 178813. [Google Scholar] [CrossRef]
- Dastidar, S.; Hawley, C.J.; Dillon, A.D.; Gutierrez-Perez, A.D.; Spanier, J.E.; Fafarman, A.T. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. J. Phys. Chem. Lett. 2017, 8, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Luongo, A.; Brunetti, B.; Vecchio Ciprioti, S.; Ciccioli, A.; Latini, A. Thermodynamic and Kinetic Aspects of Formamidinium Lead Iodide Thermal Decomposition. J. Phys. Chem. C 2021, 125, 21851–21861. [Google Scholar] [CrossRef]
- Fabini, D.H.; Siaw, T.A.; Stoumpos, C.C.; Laurita, G.; Olds, D.; Page, K.; Hu, J.G.; Kanatzidis, M.G.; Han, S.; Seshadri, R. Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. J. Am. Chem. Soc. 2017, 139, 16875–16884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knop, O.; Wasylishen, R.E.; White, M.A.; Cameron, T.S.; Van Oort, M.J.M. Alkylammonium Lead Halides. Part 2. CH3NH3PbX3 (X = Cl. Br. I) Perovskites: Cuboctahedral Halide Cages with Isotropic Cation Reorientation. Can. J. Chem. 1990, 68, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Fabini, D.H.; Hogan, T.; Evans, H.A.; Stoumpos, C.C.; Kanatzidis, M.G.; Seshadri, R. Dielectric and Thermodynamic Signatures of Low-Temperature Glassy Dynamics in the Hybrid Perovskites CH3NH3PbI3 and HC(NH2)2PbI3. J. Phys. Chem. Lett. 2016, 7, 376–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawachi, S.; Atsumi, M.; Saito, N.; Ohashi, N.; Murakami, Y.; Yamaura, J.-I. Structural and Thermal Properties in Formamidinium and Cs-Mixed Lead Halides. J. Phys. Chem. Lett. 2019, 10, 6967–6972. [Google Scholar] [CrossRef]
- Varushchenko, R.M.; Druzhinina, A.I.; Sorkin, E.L. Low-temperature Heat Capacity of 1-bromoperfluorooctane. J. Chem. Thermodyn. 1997, 29, 623–637. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The international temperature scale of 1990 (ITS-90). Metrologia 1990, 27, 3–10. [Google Scholar] [CrossRef]
- Stevens, R.; Boerio-Goates, J. Heat Capacity of Copper on the ITS-90 Temperature Scale using Adiabatic Calorimetry. J. Chem. Thermodyn. 2004, 36, 857–863. [Google Scholar] [CrossRef]
- Douglas, T.B.; Furukawa, G.T.; McCoskey, R.E.; Ball, A.F. Calorimetric Properties of Normal Heptane from 0 to 520 K. J. Res. Natl. Bur. Stand. 1954, 53, 139–153. [Google Scholar] [CrossRef]
- Gatta, G.D.; Richardson, M.J.; Sarge, S.M.; Stølen, S. Standards, Calibration, and Guidelines in Microcalorimetry. Part 2. Calibration Standards for Differential Scanning Calorimetry (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 1455–1476. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, G.T.; McCoskey, R.E.; King, G.J. Calorimetric Properties of Benzoic Acid from 0 ° to 410 ° K. J. Res. Natl. Bur. Stand. 1951, 47, 256–261. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; Bièvre, P.; De Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the Elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef]
- Keshavarz, M.; Ottesen, M.; Wiedmann, S.; Wharmby, M.; Küchler, R.; Yuan, H.; Debroye, E.; Steele, J.A.; Martens, J.; Hussey, N.E.; et al. Tracking Structural Phase Transitions in Lead-Halide Perovskites by Means of Thermal Expansion. Adv. Mater. 2019, 31, 1900521. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, V.B.; Izotov, A.D.; Gavrichev, K.S.; Shebershneva, O.V. Fractal model of heat capacity for substances with diamond-like structures. Thermochim. Acta 1995, 269–270, 109–116. [Google Scholar] [CrossRef]
- Tarasov, V.V. Theory of heat capacity of chain and layer structures. J. Fiz. Him. 1950, 24, 111–128. [Google Scholar]
- Rabinovich, I.B.; Nistratov, V.P.; Telnoy, V.I.; Sheiman, M.S. Thermochemical and Thermodynamic Properties of Organometallic Compounds; Begell House, Inc.: New York, NY, USA, 1999. [Google Scholar]
- McCullough, J.P.; Scott, D.W. Calorimetry of Non-Reacting Systems; Pergamon Press: London, UK, 1968. [Google Scholar]
- Juarez-Perez, E.J.; Ono, L.K.; Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 2019, 7, 16912–16919. [Google Scholar] [CrossRef]
- Ma, L.; Guo, D.; Li, M.; Wang, C.; Zhou, Z.; Zhao, X.; Zhang, F.; Ao, Z.; Nie, Z. Temperature-Dependent Thermal Decomposition Pathway of organic-Inorganic Halide Perovskite Materials. Chem. Mater. 2019, 31, 8515–8522. [Google Scholar] [CrossRef]
- Shi, L.; Bucknall, M.P.; Young, T.L.; Zhang, M.; Hu, L.; Bing, J.; Lee, D.S.; Kim, J.; Wu, T.; Takamure, N.; et al. Gas Chromatography-Mass Spectrometry Analyses of Encapsulated Stable Perovskite Solar Cells. Science 2020, 368, eaba2412. [Google Scholar] [CrossRef]
- Iorish, V.S.; Belov, G.V. Thermocenter of the Russian Academy of Sciences; IVTAN Association: Moscow, Russia, 1994. [Google Scholar]
- Dorofeeva, O.V.; Tolmach, P.I. Estimation of the thermodynamic properties of nitroguanidine. hexahydro-1.3.5-trinitro-1.3.5-triazine and octahydro-1.3.5.7-tetranitro-45. 1.3.5.7-tetrazocine in the gas phase. Thermochim. Acta 1994, 240, 47–66. [Google Scholar] [CrossRef]
- Almatarneh, M.H.; Flinn, C.G.; Poirier, R.A. Ab initio study of the decomposition of formamidine. Can. J. Chem. 2005, 83, 2082–2090. [Google Scholar] [CrossRef]
ΔT/K | 5.1–15.59 | 15.1–49 | 55.3–169.25 | 177.35–264.5 | 277–348.6 |
---|---|---|---|---|---|
Polynomial Equation | Equation (3) | Equation (2) | Equation (2) | Equation (1) | Equation (1) |
Polynomial coefficients Aj/J·K−1·mol−1 | |||||
A1 | 6.98063245569 | 72.1805440502 | 665.255636971 | 45681.4280583 | 8877.64561611 |
A2 | 23.7955920199 | 77.9940374434 | −3441.21621166 | −37665.2837805 | −4276.71076903 |
A3 | 74.7572736802 | 4.92397788153 | 8727.22957825 | 12968.2759007 | 846.025046732 |
A4 | 129.714906491 | −42.6554451220 | −11401.7231003 | −2377.65802029 | −84.1041302983 |
A5 | 127.775856795 | 14.2864214298 | 8200.53002955 | 244.791040664 | 4.19903809680 |
A6 | 72.6841227853 | 168.566960506 | −3085.56203393 | −13.4148724548 | −0.0841152839781 |
A7 | 22.2866932511 | 179.845822583 | 476.985049821 | 0.305655340534 | |
A8 | 2.85860464508 | 42.4593828923 |
Transition | ΔT/K | Tmax/K | C°p,m/J·K−1·mol−1 | Enthalpy/J·mol−1 | Entropy/J·K−1·mol−1 |
---|---|---|---|---|---|
I | 49.5–55.5 | 52.9 | 176.5 | 132.5 | 2.5 |
II | 110.0–177.5 | 171.85 | 227.4 | 1569 | 10.3 |
III | 264.5–277.4 | 273.72 | 195.3 | 56.6 | 0.21 |
T/K | C°p,m/ J·K−1·mol−1 | [H°(T) − H°(0)]/ kJ·mol−1 | S°(T)/ J·K−1·mol−1 | −[G°(T) − H°(0)]/T J·K−1·mol−1 |
---|---|---|---|---|
Crystal III | ||||
5 | 2.29 | 0.00289 | 0.772 | 0.193 |
10 | 12.7 | 0.0380 | 5.23 | 1.430 |
15 | 27.8 | 0.138 | 13.2 | 3.933 |
20 | 43.47 | 0.3165 | 23.30 | 7.475 |
25 | 58.37 | 0.5714 | 34.62 | 11.76 |
30 | 72.18 | 0.8984 | 46.50 | 16.55 |
35 | 84.19 | 1.290 | 58.56 | 21.69 |
40 | 94.55 | 1.737 | 70.49 | 27.05 |
45 | 104.9 | 2.236 | 82.21 | 32.53 |
50 | 117.6 | 2.791 | 93.89 | 38.08 |
52.9 | 122.6 | 3.139 | 100.7 | 41.32 |
Crystal II | ||||
52.9 | 122.6 | 3.271 | 103.2 | 41.32 |
60 | 128.1 | 4.165 | 119.0 | 49.60 |
70 | 135.0 | 5.481 | 139.3 | 60.99 |
80 | 140.7 | 6.860 | 157.7 | 71.94 |
90 | 146.2 | 8.294 | 174.6 | 82.42 |
100 | 152.1 | 9.785 | 190.3 | 92.43 |
110 | 158.4 | 11.34 | 205.1 | 102.0 |
120 | 165.2 | 12.96 | 219.1 | 111.2 |
130 | 172.6 | 14.64 | 232.6 | 120.0 |
140 | 181.3 | 16.41 | 245.7 | 128.5 |
150 | 192.3 | 18.28 | 258.6 | 136.8 |
160 | 206.9 | 20.27 | 271.5 | 144.8 |
170 | 226.7 | 22.43 | 284.6 | 152.6 |
Crystal I | ||||
180 | 169.3 | 24.34 | 295.5 | 160.3 |
190 | 169.8 | 26.04 | 304.7 | 167.6 |
200 | 171.1 | 27.74 | 313.4 | 174.7 |
210 | 172.8 | 29.46 | 321.8 | 181.5 |
220 | 174.8 | 31.20 | 329.9 | 188.1 |
230 | 177.0 | 32.96 | 337.7 | 194.4 |
240 | 179.2 | 34.74 | 345.3 | 200.5 |
250 | 181.3 | 36.54 | 352.6 | 206.5 |
260 | 183.9 | 38.37 | 359.8 | 212.2 |
270 | 190.4 | 40.23 | 366.8 | 217.9 |
280 | 186.4 | 42.14 | 373.8 | 223.3 |
290 | 186.9 | 44.01 | 380.3 | 228.6 |
298.15 | 187.6 | 45.53 | 385.5 | 232.8 |
300 | 187.8 | 45.88 | 386.7 | 233.8 |
310 | 188.9 | 47.76 | 392.9 | 238.8 |
320 | 190.2 | 49.66 | 398.9 | 243.7 |
330 | 191.5 | 51.56 | 404.7 | 248.5 |
340 | 192.8 | 53.49 | 410.5 | 253.2 |
345 | 193.3 | 54.45 | 413.3 | 255.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccioli, A.; Latini, A.; Luongo, A.; Smirnova, N.N.; Markin, A.V.; Vecchio Ciprioti, S. Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K. Entropy 2022, 24, 145. https://doi.org/10.3390/e24020145
Ciccioli A, Latini A, Luongo A, Smirnova NN, Markin AV, Vecchio Ciprioti S. Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K. Entropy. 2022; 24(2):145. https://doi.org/10.3390/e24020145
Chicago/Turabian StyleCiccioli, Andrea, Alessandro Latini, Alessio Luongo, Natalia N. Smirnova, Alexey V. Markin, and Stefano Vecchio Ciprioti. 2022. "Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K" Entropy 24, no. 2: 145. https://doi.org/10.3390/e24020145
APA StyleCiccioli, A., Latini, A., Luongo, A., Smirnova, N. N., Markin, A. V., & Vecchio Ciprioti, S. (2022). Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K. Entropy, 24(2), 145. https://doi.org/10.3390/e24020145